52 research outputs found

    The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer.

    Get PDF
    Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research

    Canine Glioma as a Model for Human Glioblastoma

    Get PDF
    Glioblastoma, a high-grade diffuse glioma, carries a poor clinical prognosis despite decades of extensive research on the genetic and molecular features of disease and investigation of experimental therapeutics. Because spontaneous canine glioma and human glioblastoma share many clinicopathologic characteristics, recent efforts have focused on utilizing companion dogs as a preclinical model for both research and therapeutic development. A detailed investigation of the canine disease, with particular attention to the genetic and molecular profile, is important in order to allow translation of specific clinical findings from canines to humans and vice versa. In this chapter, we investigate the most common genetic, molecular, and epigenetic alterations associated with canine and human glioma. Appropriate implementation of the canine glioma model may provide valuable information to improve both human and veterinary patient care

    Targeting ATF5 in Cancer.

    No full text

    Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers

    No full text
    Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies
    • …
    corecore