50 research outputs found

    Role of S-nitrosothiols in the establishment of disease resistance in Arabidopsis

    Get PDF

    The Zymoseptoria tritici white collar-1 gene, ZtWco-1, is required for development and virulence on wheat

    Get PDF
    Publication history: Accepted - 9 June 2022: Published online - 14 June 2022The fungus Zymoseptoria tritici causes Septoria Tritici Blotch (STB), which is one of the most devastating diseases of wheat in Europe. There are currently no fully durable methods of control against Z. tritici, so novel strategies are urgently required. One of the ways in which fungi are able to respond to their surrounding environment is through the use of photoreceptor proteins which detect light signals. Although previous evidence suggests that Z. tritici can detect light, no photoreceptor genes have been characterised in this pathogen. This study characterises ZtWco-1, a predicted photoreceptor gene in Z. tritici. The ZtWco-1 gene is a putative homolog to the blue light photoreceptor from Neurospora crassa, wc-1. Z. tritici mutants with deletions in ZtWco-1 have defects in hyphal branching, melanisation and virulence on wheat. In addition, we identify the putative circadian clock gene ZtFrq in Z. tritici. This study provides evidence for the genetic regulation of light detection in Z. tritici and it open avenues for future research into whether this pathogen has a circadian clock.AMMT was supported by a Government of Ireland Postdoctoral Fellowship Programme award (GOIPD/2018/461) and the BBSRC SWBio Doctoral Training Partnership. This work was performed under DEFRA licence number 51046-198767 and EPA GMO Register No. G0555-01 and G0647-01

    S-nitrosylation of NADPH oxidase regulates cell death in plant immunity

    Get PDF
    Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol- mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals

    The endosome as an effector target to mediate plant immunity?

    No full text

    Diseases of Temperate Nuts

    No full text

    Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease

    No full text
    The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E. necator meaning that grape production is highly dependent on the frequent use of fungicides. The integration of effective genetic resistance into cultivated grapevines would lead to significant financial and environmental benefits and represents a major challenge for viticultural industries and researchers worldwide. This review will outline the strategies being used to increase our understanding of the molecular basis of V. vinifera susceptibility to this fungal pathogen. It will summarize our current knowledge of different resistance loci/genes that have evolved in wild grapevine species to restrict PM infection and assess the potential application of these defense genes in the generation of PM-resistant grapevine germplasm. Finally, it addresses future research priorities which will be important in the rapid identification, evaluation, and deployment of new PM resistance genes which are capable of conferring effective and durable resistance in the vineyard
    corecore