16 research outputs found

    Norfloxacin-Loaded Electrospun Scaffolds: Montmorillonite Nanocomposite vs. Free Drug

    Get PDF
    The authors wish to thank Giusto Faravelli SpA for suppling the polymers.Infections in nonhealing wounds remain one of the major challenges. Recently, nanomedicine approach seems a valid option to overcome the antibiotic resistance mechanisms. The aim of this study was the development of three types of polysaccharide-based scaffolds (chitosan-based (CH), chitosan/chondroitin sulfate-based (CH/CS), chitosan/hyaluronic acid-based (CH/HA)), as dermal substitutes, to be loaded with norfloxacin, intended for the treatment of infected wounds. The scaffolds have been loaded with norfloxacin as a free drug (N scaffolds) or in montmorillonite nanocomposite (H—hybrid-scaffolds). Chitosan/glycosaminoglycan (chondroitin sulfate or hyaluronic acid) scaffolds were prepared by means of electrospinning with a simple, one-step process. The scaffolds were characterized by 500 nm diameter fibers with homogeneous structures when norfloxacin was loaded as a free drug. On the contrary, the presence of nanocomposite caused a certain degree of surface roughness, with fibers having 1000 nm diameters. The presence of norfloxacin–montmorillonite nanocomposite (1%) caused higher deformability (90–120%) and lower elasticity (5–10 mN/cm2 ), decreasing the mechanical resistance of the systems. All the scaffolds were proven to be degraded via lysozyme (this should ensure scaffold resorption) and this sustained the drug release (from 50% to 100% in 3 days, depending on system composition), especially when the drug was loaded in the scaffolds as a nanocomposite. Moreover, the scaffolds were able to decrease the bioburden at least 100-fold, proving that drug loading in the scaffolds did not impair the antimicrobial activity of norfloxacin. Chondroitin sulfate and montmorillonite in the scaffolds are proven to possess a synergic performance, enhancing the fibroblast proliferation without impairing norfloxacin’s antimicrobial properties. The scaffold based on chondroitin sulfate, containing 1% norfloxacin in the nanocomposite, demonstrated adequate stiffness to sustain fibroblast proliferation and the capability to sustain antimicrobial properties to prevent/treat nonhealing wound infection during the healing process.This work was partially supported by Horizon 2020 Research and Innovation Programme under Grant Agreement No 814607

    Wound Healing Activity of Nanoclay/Spring Water Hydrogels

    Get PDF
    Background: hydrogels prepared with natural inorganic excipients and spring waters are commonly used in medical hydrology. Design of these clay-based formulations continues to be a field scarcely addressed. Safety and wound healing properties of different fibrous nanoclay/spring water hydrogels were addressed. Methods: in vitro biocompatibility, by means of MTT assay, and wound healing properties were studied. Confocal Laser Scanning Microscopy was used to study the morphology of fibroblasts during the wound healing process. Results: all the ingredients demonstrated to be biocompatible towards fibroblasts. Particularly, the formulation of nanoclays as hydrogels improved biocompatibility with respect to powder samples at the same concentration. Spring waters and hydrogels were even able to promote in vitro fibroblasts motility and, therefore, accelerate wound healing with respect to the control. Conclusion: fibrous nanoclay/spring water hydrogels proved to be skin-biocompatible and to possess a high potential as wound healing formulations. Moreover, these results open new prospects for these ingredients to be used in new therapeutic or cosmetic formulations.This research was funded by Ministerio de Ciencia e Innovación, CGL2016–80833-R; Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía, P18-RT-3786 and Ministerio de Educación, Cultura y Deporte, FPU15/01577.Peer reviewe

    Topographical and compositional gradient tubular scaffold for bone to tendon interface regeneration

    Get PDF
    The enthesis is an extremely specific region, localized at the tendon–bone interface (TBI) and made of a hybrid connection of fibrocartilage with minerals. The direct type of enthesis tissue is commonly subjected to full laceration, due to the stiffness gradient between the soft tissues and hard bone, and this often reoccurs after surgical reconstruction. For this purpose, the present work aimed to design and develop a tubular scaffold based on pullulan (PU) and chitosan (CH) and intended to enhance enthesis repair. The scaffold was designed with a topographical gradient of nanofibers, from random to aligned, and hydroxyapatite (HAP) nanoparticles along the tubular length. In particular, one part of the tubular scaffold was characterized by a structure similar to bone hard tissue, with a random mineralized fiber arrangement; while the other part was characterized by aligned fibers, without HAP doping. The tubular shape of the scaffold was also designed to be extemporarily loaded with chondroitin sulfate (CS), a glycosaminoglycan effective in wound healing, before the surgery. Micro CT analysis revealed that the scaffold was characterized by a continuous gradient, without interruptions from one end to the other. The gradient of the fiber arrangement was observed using SEM analysis, and it was still possible to observe the gradient when the scaffold had been hydrated for 6 days. In vitro studies demonstrated that human adipose stem cells (hASC) were able to grow and differentiate onto the scaffold, expressing the typical ECM production for tendon in the aligned zone, or bone tissue in the random mineralized part. CS resulted in a synergistic effect, favoring cell adhesion/proliferation on the scaffold surface. These results suggest that this tubular scaffold loaded with CS could be a powerful tool to support enthesis repair upon surgery.Horizon 2020 Research and Innovation Programme under Grant Agreement No. 81460

    Smart Device for Biologically Enhanced Functional Regeneration of Osteo–Tendon Interface

    No full text
    The spontaneous healing of a tendon laceration results in the formation of scar tissue, which has lower functionality than the original tissue. Moreover, chronic non-healing tendon injuries frequently require surgical treatment. Several types of scaffolds have been developed using the tissue engineering approach, to complement surgical procedures and to enhance the healing process at the injured site. In this work, an electrospun hybrid tubular scaffold was designed to mimic tissue fibrous arrangement and extracellular matrix (ECM) composition, and to be extemporaneously loaded into the inner cavity with human platelet lysate (PL), with the aim of leading to complete post-surgery functional regeneration of the tissue for functional regeneration of the osteo–tendon interface. For this purpose, pullulan (P)/chitosan (CH) based polymer solutions were enriched with hydroxyapatite nanoparticles (HP) and electrospun. The nanofibers were collected vertically along the length of the scaffold to mimic the fascicle direction of the tendon tissue. The scaffold obtained showed tendon-like mechanical performance, depending on HP content and tube size. The PL proteins were able to cross the scaffold wall, and in vitro studies have demonstrated that tenocytes and osteoblasts are able to adhere to and proliferate onto the scaffold in the presence of PL; moreover, they were also able to produce either collagen or sialoproteins, respectively—important components of ECM. These results suggest that HP and PL have a synergic effect, endorsing PL-loaded HP-doped aligned tubular scaffolds as an effective strategy to support new tissue formation in tendon-to-bone interface regeneration

    NANOCOMPOSITE SCAFFOLDS FOR TISSUE ENGINEERING

    No full text
    Lo scopo del progetto è stata la progettazione e lo sviluppo di scaffold elettrofilati ibridi a base di polisaccaridi e glicosaminoglicani con particelle minerali incluse nella matrice nanofibrosa. Gli scaffold sono stati destinati all'ingegneria dei tessuti dermici o tendinei. Gli scaffold dermici sono stati caricati con montmorillonite o alloisite, come dispositivi medici. Inoltre, sono stati sviluppati scaffold caricati con un nanocomposito di norfloxacina-montmorillonite per trattare e prevenire le infezioni delle ferite. Sono stati sviluppati anche scaffold tubolari, come impianto nella chirurgia dei tendini. Tali scaffold sono costituiti da nanofibre allineate lungo la lunghezza della struttura e caricati con nanoparticelle di idrossiapatite, oppure sono costituiti da una struttura che presenta un gradiente in nanoparticelle di idrossiapatite, in una parte nanofibrosa, come estremità ossea, e da una struttuta nanofibrosa allineata, come estremità del tendine, con lo scopo specifico di riparare l'interfaccia tendine-osso. Il lisato piastrinico o il condroitin solfato e le cellule staminali adipose, sono stati caricati nei due tipi di scaffold per migliorare il processo di guarigione delle lesioni tendinee.The aim of the project was the design and the development of hybrid electrospun scaffolds based on polysaccharides and glycosaminoglycans. Mineral particles were included in the nanofibrous matrix. The scaffolds were intended for dermal or tendon tissue engineering. Dermal scaffolds were loaded with montmorillonite or halloysite, as medical devices. Moreover, scaffolds loaded with norfloxacin-montmorillonite nanocomposite were developed to treat and prevent wound infections. Furthermore, tubular scaffolds, as implants in tendon surgery were developed. They were made of nanofibers aligned along scaffold length, and loaded with hydroxyapatite nanoparticles, or are made of a tubular scaffold based on a gradient in hydroxyapatite nanoparticles, in a random nanofibrous part, as bone end, and on an aligned nanofibrous scaffolds, as tendon end, and this latter is specifically intended to repair the tendon to bone interface. Platelet lysate or chondroitin sulfate and adipose stem cells were loaded in the two scaffold types to enhance the wound healing process

    Development of a Mucoadhesive and In Situ Gelling Formulation Based on Îş-Carrageenan for Application on Oral Mucosa and Esophagus Walls. I. A Functional In Vitro Characterization

    No full text
    Oral mucositis and esophagitis represent the most frequent and clinically significant complications of cytoreductive chemotherapy and radiotherapy, which severely compromise the patient quality of life. The local application of polymeric gels could protect the injured tissues, alleviating the most painful symptoms. The present work aims at developing in situ gelling formulations for the treatment of oral mucositis and esophagitis. To reach these targets, κ-carrageenan (κ-CG) was selected as a polymer having wound healing properties and able to gelify in the presence of saliva ions, while hydroxypropyl cellulose (HPC) was used to improve the mucoadhesive properties of the formulations. CaCl2 was identified as a salt able to enhance the interaction between κ-CG and saliva ions. Different salt and polymer concentrations were investigated in order to obtain a formulation having the following features: (i) low viscosity at room temperature to facilitate administration, (ii) marked elastic properties at 37 °C, functional to a protective action towards damaged tissues, and (iii) mucoadhesive properties. Prototypes characterized by different κ-CG, HPC, and CaCl2 concentrations were subjected to a thorough rheological characterization and to in vitro mucoadhesion and washability tests. The overall results pointed out the ability of the developed formulations to produce a gel able to interact with saliva ions and to adhere to the biological substrates

    Nanofiber scaffolds as drug delivery systems to bridge spinal cord injury

    No full text
    The complex pathophysiology of spinal cord injury (SCI) may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. A primary mechanical injury in the spinal cord triggers a cascade of secondary events, which are involved in SCI instauration and progression. The aim of the present review is to provide an overview of the therapeutic neuro-protective and neuro-regenerative approaches, which involve the use of nanofibers as local drug delivery systems. Drugs released by nanofibers aim at preventing the cascade of secondary damage (neuro-protection), whereas nanofibrous structures are intended to re-establish neuronal connectivity through axonal sprouting (neuro-regeneration) promotion, in order to achieve a rapid functional recovery of spinal cord

    Halloysite- and Montmorillonite-Loaded Scaffolds as Enhancers of Chronic Wound Healing

    No full text
    The increase in life expectancy and the increasing prevalence of diabetic disease and venous insufficiency lead to the increase of chronic wounds. The prevalence of ulcers ranges from 1% in the adult population to 3–5% in the over 65 years population, with 3–5.5% of the total healthcare expenditure, as recently estimated. The aim of this work was the design and the development of electrospun scaffolds, entirely based on biopolymers, loaded with montmorillonite (MMT) or halloysite (HNT) and intended for skin reparation and regeneration, as a 3D substrate mimicking the dermal ECM. The scaffolds were manufactured by means of electrospinning and were characterized for their chemico-physical and preclinical properties. The scaffolds proved to possess the capability to enhance fibroblast cells attachment and proliferation with negligible proinflammatory activity. The capability to facilitate the cell adhesion is probably due to their unique 3D structure which are assisting cell homing and would facilitate wound healing in vivo
    corecore