48 research outputs found

    ROLE OF CHECKPOINT PROTEINS IN THE SUCCESS OF BIR

    Get PDF
    poster abstractBreak-induced replication (BIR) is an important homologous recombina-tion (HR) pathway employed to repair DNA lesions and has been implicated in various chromosomal instabilities, including loss of heterozygosity, trans-locations, and alternative telomere lengthening. Here, we study the role of checkpoint proteins in DNA repair in yeast Saccharomyces cerevisiae. Cell cycle checkpoints are required for the proper progression of the cell cycle. These checkpoint proteins sense problems during the cell cycle and halt pro-gression to allow mistakes to be corrected and the loss of checkpoint con-trols leads to major defects. RAD9 and RAD24, two important checkpoint proteins play a vital role in arresting the cell cycle upon DNA damage and are also responsible for bringing together the DNA repair machinery. We ob-served that mutations made in the genes encoding RAD9 and RAD24 result-ed in the formation of multiple sectors in individual colonies where, every in-dividual sector repaired differently. We analyze the frequency of different re-pair outcomes associated with BIR in these multi-sectored events. We also report that defective BIR in these checkpoint mutants lead to formation of half-crossovers similar to NRTs reported in mammals, which are implicated in the initiation of cascades of genomic instability characteristic of human cancer cells. 1Department of Environmental and Radiological Health Sciences, College of Veterinary Medi-cine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523

    Ether Phospholipids Are Required for Mitochondrial Reactive Oxygen Species Homeostasis

    Get PDF
    Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition

    SMARCB1 Regulates the Hypoxic Stress Response in Sickle Cell Trait

    Get PDF
    Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies

    PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development. Statement of significance PDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors

    Genome-destabilizing and mutagenic effects of break-induced replication in Saccharomyces cerevisiae

    Get PDF
    DNA suffers constant damage, leading to a variety of lesions that require repair. One of the most devastating lesions is a double-strand break (DSB), which results in physical dissociation of two pieces of a chromosome. Necessarily, cells have evolved a number of DSB repair mechanisms. One mechanism of DSB repair is break-induced replication (BIR), which involves invasion of one side of the broken chromosome into a homologous template, followed by copying of the donor molecule through telomeric sequences. BIR is an important cellular process implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities. Furthermore, BIR uniquely combines processive replication involving a replication fork with DSB repair. This work employs a system in Saccharomyces cerevisiae to investigate genetic control, physical outcomes, and frameshift mutagenesis associated with BIR initiated by a controlled HO-endonuclease break in a chromosome. Mutations in POL32, which encodes a third, non-essential subunit of polymerase δ (Pol), as well as RAD9 and RAD24, which participate in the DNA damage checkpoint response, resulted in a BIR defect characterized by decreased BIR repair and increased loss of the broken chromosome. Also, increased incidence of chromosomal fusions determined to be half-crossover (HCO) molecules was confirmed in pol32Δ and rad24Δ, as well as a rad9Δrad50S double mutant. HCO formation was also stimulated by addition of a replication-inhibiting drug, methyl-methane sulfonate (MMS), to cells undergoing BIR repair. Based on these data, it is proposed that interruption of BIR after it has initiated is one mechanism of HCO formation. Addition of a frameshift mutation reporter to this system allowed mutagenesis associated with BIR DNA synthesis to be measured. It is demonstrated that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2800-fold higher than normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. Pol delta proofreading and mismatch repair (MMR) are confirmed to correct BIR errors. Based on these data, it is proposed that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR. Pif1p, a helicase that is non-essential for DNA replication, and elevated dNTP levels during BIR also contributed to BIR mutagenesis. Taken together, this work characterizes BIR as an essential repair process that also poses risks to a cell, including genome destabilization and hypermutagenesis
    corecore