132 research outputs found

    Harnessing Soluble NK Cell Killer Receptors for the Generation of Novel Cancer Immune Therapy

    Get PDF
    The natural cytotoxic receptors (NCRs) are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The NCRs, which include three members; NKp46, NKp44 and NKp30, are critically involved in NK cytotoxicity against different targets, including a wide range of tumor cells derived from various origins. Even though the tumor ligands of the NCRs have not been identified yet, the selective manner by which these receptors target tumor cells may provide an excellent basis for the development of novel anti-tumor therapies. To test the potential use of the NCRs as anti-tumor agents, we generated soluble NCR-Ig fusion proteins in which the constant region of human IgG1 was fused to the extracellular portion of the receptor. We demonstrate, using two different human prostate cancer cell lines, that treatment with NKp30-Ig, dramatically inhibits tumor growth in vivo. Activated macrophages were shown to mediate an ADCC response against the NKp30-Ig coated prostate cell lines. Finally, the Ig fusion proteins were also demonstrated to discriminate between benign prostate hyperplasia and prostate cancer. This may provide a novel diagnostic modality in the difficult task of differentiating between these highly common pathological conditions

    Expression of Ligands to NKp46 in Benign and Malignant Melanocytes

    Get PDF
    Human melanoma cell lines were shown to express ligands for the natural cytotoxicity receptor, NKp46, expressed by natural killer (NK) cells. We aimed to examine the expression of ligands for NKp46 by various primary human melanocytic cells and melanocytic lesions. Sections from primary nevi and melanomas were tested for expression of NKp46 ligands employing chimeric NKp46-Fc for staining. The melanocytes present in the reticular dermis were negative for NKp46 ligands in common nevi; in malignant melanocytic lesions, the deeper melanocytes were focally positive. In dermoepidermal junction of all melanocytic lesions, the melanocytes showed enhanced expression of NKp46 ligands. Melanophages in all lesions were consistently positive for NKp46 ligands. These observations establish the expression of NKp46 ligands by primary-transformed melanocytes. Normal melanocytes did not express ligands to NKp46. Therefore, the results show (i) a correlation between the malignant potential of the lesion and the expression of NKp46 ligands in the reticular dermis, and (ii) enhanced expression of NKp46 ligands in the active proliferation zone (dermoepidermal junction) of nevi and melanomas. Ligands to NKp46 were expressed on the membrane and within the cells. The physiological role of NKp46 ligands in the progression of malignancy within melanocytic lesions should be explored further

    Tumor Tissue Explant Culture of Patient-Derived Xenograft as Potential Prioritization Tool for Targeted Therapy

    Get PDF
    Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 Γ— 2 Γ— 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 Γ— 2 Γ— 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed

    The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells

    Get PDF
    The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response

    Serum Apolipoproteins C-I and C-III Are Reduced in Stomach Cancer Patients: Results from MALDI-Based Peptidome and Immuno-Based Clinical Assays

    Get PDF
    Finding new peptide biomarkers for stomach cancer in human sera that can be implemented into a clinically practicable prediction method for monitoring of stomach cancer. We studied the serum peptidome from two different biorepositories. We first employed a C8-reverse phase liquid chromatography approach for sample purification, followed by mass-spectrometry analysis. These were applied onto serum samples from cancer-free controls and stomach cancer patients at various clinical stages. We then created a bioinformatics analysis pipeline and identified peptide signature discriminating stomach adenocarcinoma patients from cancer-free controls. Matrix Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) results from 103 samples revealed 9 signature peptides; with prediction accuracy of 89% in the training set and 88% in the validation set. Three of the discriminating peptides discovered were fragments of Apolipoproteins C-I and C-III (apoC-I and C-III); we further quantified their serum levels, as well as CA19-9 and CRP, employing quantitative commercial-clinical assays in 142 samples. ApoC-I and apoC-III quantitative results correlated with the MS results. We then employed apoB-100-normalized apoC-I and apoC-III, CA19-9 and CRP levels to generate rules set for stomach cancer prediction. For training, we used sera from one repository, and for validation, we used sera from the second repository. Prediction accuracies of 88.4% and 74.4% were obtained in the training and validation sets, respectively. Serum levels of apoC-I and apoC-III combined with other clinical parameters can serve as a basis for the formulation of a diagnostic score for stomach cancer patients

    The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk

    Get PDF
    Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNΞ³ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNΞ³ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligandhigh lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-liganddull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC
    • …
    corecore