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Human melanoma cell lines were shown to express ligands for the natural cytotoxicity receptor, NKp46,
expressed by natural killer (NK) cells. We aimed to examine the expression of ligands for NKp46 by various
primary human melanocytic cells and melanocytic lesions. Sections from primary nevi and melanomas were
tested for expression of NKp46 ligands employing chimeric NKp46-Fc for staining. The melanocytes present in
the reticular dermis were negative for NKp46 ligands in common nevi; in malignant melanocytic lesions, the
deeper melanocytes were focally positive. In dermoepidermal junction of all melanocytic lesions, the
melanocytes showed enhanced expression of NKp46 ligands. Melanophages in all lesions were consistently
positive for NKp46 ligands. These observations establish the expression of NKp46 ligands by primary-
transformed melanocytes. Normal melanocytes did not express ligands to NKp46. Therefore, the results show
(i) a correlation between the malignant potential of the lesion and the expression of NKp46 ligands in the
reticular dermis, and (ii) enhanced expression of NKp46 ligands in the active proliferation zone
(dermoepidermal junction) of nevi and melanomas. Ligands to NKp46 were expressed on the membrane and
within the cells. The physiological role of NKp46 ligands in the progression of malignancy within melanocytic
lesions should be explored further.
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INTRODUCTION
Natural killer (NK) cells are the principal effector cells of the
innate immune system and have a well-established role in
anti-tumor responses and cancer immunosurveillance (Dunn
et al., 2002). The NK–tumor direct interaction is essentially
mediated through the repertoire of ligands to NK receptors
manifested by the cancer cells (Biassoni et al., 2001). NK
cells response is the outcome of a delicately regulated
balance between activating and inhibitory signals delivered
by a multitude of NK receptors (Biassoni et al., 2001; Moretta

et al., 2001). Binding of major histocompatibility complex
class I molecules to NK inhibitory receptors results in an
inhibition signal and preclude lysis by NK cells. In contrast,
cells that express insufficient levels of major histocompat-
ibility complex class I molecules, a phenomenon that
frequently accompanies tumor transformation, become sus-
ceptible to NK killing (Karre, 2002); the ground is set for
tumor cell lysis by NK cells, mediated by signaling through
the NK-activating receptors (Bakker et al., 2000; Cerwenka
et al., 2000; Biassoni et al., 2001; Moretta et al., 2001;
McQueen and Parham, 2002).

A prime player within these NK-activating receptors is the
NKp46 receptor, considered as a major member of the
natural cytotoxicity receptors (NCRs) group that also includes
the NKp30 and NKp44 receptors (Biassoni et al., 2001;
Moretta et al., 2001). NKp46 is highly NK-specific and can
trigger NK-mediated lysis of various tumor cells through
direct engagement of membranal ligands expressed by the
cancerous cell (Moretta et al., 2001). We and others
published that NKp46 recognizes cellular ligands expressed
on a wide variety of tumor cell lines, including melanoma
cell lines (Moretta et al., 2000, 2001; Arnon et al.,
2001, 2004; Biassoni et al., 2001; Mandelboim and
Porgador, 2001; Mandelboim et al., 2001). Furthermore, it
has been established that NKp46 is a primary NK-activating
receptor for the recognition and lysis of human melanoma
cell lines by fresh NK (Moretta et al., 2000; Pende
et al., 2002).
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In this study, we further explored the expression of
ligands to NKp46 on human primary melanocytic nevi and
melanomas. True melanocytic tumors are defined by a
sustained proliferation of transformed melanocytes. They
include three main categories: nevi, dysplastic nevi (DysN),
and melanomas (Wick and Patterson, 2005). Benign nevi
(predominantly junctional, compound, and intradermal nevi
(IN)) show increased nevus cells numbers that retain more
melanin and lie next to each other or in nests. The cells of
melanoma behave similarly, but they proliferate without
control to eventually metastasize. The DysN were first
described as large, clinically atypical nevi presenting in several
members of the same family, of which two members at least
developed melanoma. The DysN have specific histological
features; these include a lentiginous architecture, with mela-
nocytes proliferating from the basal epidermis into the papillary
dermis and show cellular atypia (Wick and Patterson, 2005).

The role of NK cells in response to melanocytic nevi and
melanoma has been studied with the immunoperoxidase
method, using the B73.1 antibody, raised against an Fc receptor
present on NK cells and neutrophils. Rare NK cells were
identified in about 10% of DysN and in 1 of 8 primary
melanomas. In contrast, NK cells were much more frequent in
metastatic melanomas (Kornstein et al., 1987). Using the same
antibody, the investigators found later that a staining reaction was
obtained exclusively with malignant cells in the last two stages of
the tumor progression—the vertical growth phase primary
melanoma and the metastatic tumor (Kornstein et al., 1987).

To understand further the role of NK cells in response to
melanocytic tumors, we aimed to investigate the expression
of ligands to NKp46 by the different melanocytic tumors. We
employed recombinant NKp46, in which the extracellular
domains are fused to the Fc backbone of human IgG1, to
stain sections of formalin-fixed, paraffin-embedded nevi and
melanomas. Thus, expression pattern of all ligands to NKp46
on primary cancerous and interstitial cells in these primary
tissues could be analyzed.

RESULTS
We previously published that recombinant NKp46-Ig binds to
cellular ligands expressed on tumor cells (Arnon et al., 2001;
Mandelboim and Porgador, 2001; Mandelboim et al., 2001).
We further showed that the membrane-proximal domain of
NKp46 (NKp46D2), but not the membrane-distal domain
(NKp46D1), retained the binding of NKp46 to tumoral and
viral ligands (Arnon et al., 2004; Bloushtain et al., 2004; Zilka
et al., 2005). Similarly, others have shown that NKp46 and
NKp46D2, but not NKp46D1, bind to Duffy binding-like-1a
domain of Plasmodium falciparum erythrocyte membrane
protein-1 expressed on parasitized erythrocytes (Mavoungou
et al., 2007). In these studies, NKp46 and NKp46D2 had
identical binding phenotype, yet NKp46D2 manifested better
binding capacity. Thus, in this study we used the NKp46D2-
Ig for detecting NKp46 ligands expressed by normal and
transformed melanocytes. 1106mel and A-375 are human
melanoma cell lines derived from metastatic lesions. We
previously published that 1106mel cells express ligands to
NKp46 (Arnon et al., 2001; Mandelboim et al., 2001). We

now compared expression of ligands to NKp46 between
1106mel and A-375 employing the NKp46D2-Ig. A-375 cells
are stained positively with NKp46D2-Ig, yet to a lesser extent
compared to 1106mel cells (Figure 1a, representative
experiment). Both cells were negative for staining with
NKp46D1-Ig (Figure 1b for A-375). Therefore, both meta-
static melanoma cell lines express membrane-associated
ligands to NKp46, yet they vary in expression densities.

We next studied whether the ligands are expressed within
intracellular compartments. Permeabilization of A-375 cells
significantly enhanced the binding of NKp46D2-Ig, while
NKp46D1-Ig binding was null indicating the specificity of the
NKp46D2-Ig binding to intracellular ligands (Figure 1b).
Confocal analysis of A-375 cells stained with NKp46D2-Ig
further revealed the intracellular localization of NKp46
ligands, and showed their abundance in the perinuclear
zone (Figure 1c, arrow-marked). Again, NKp46D1-Ig did not
stain the cells (Figure 1c).

We further investigated primary human malignant and
non-malignant melanocytes hyperplasia. We stained with
NKp46D2-Ig to detect the expression of NKp46 ligands and
employed NKp46D1-Ig as a negative staining control.
Staining with NKp46 fusion proteins was performed on
different kinds of benign and malignant melanocytic lesions
(detailed in Table 1). Nevi were represented by one
junctional nevus, seven IN, twelve compound nevi (CN),
and nine DysN. The patients were 12 females and 17 males
(range 8–63 years). The nevi were located mostly on the back
(12/29). The malignant melanocytic lesions included two
lentigo maligna, eleven superficial spreading malignant
melanomas (SSMMs), and nine nodular melanomas. The
patients were 11 females and 11 males (range 23–83 years).
The malignant lesions were biopsied mostly from the back (4/
22), arm (4/22), leg (3/22), and cheek (3/22). One of the
lentigo maligna was in situ, the other showed invasion into
the papillary dermis (Clark level II). Clinical staging of the
SSMMs varied between Clark levels II, III (7/11), and IV, and
Breslow (tumor thickness) between 0.20 and 1.8 mm. The
cases of nodular melanomas showed Clark levels III, IV (7/9),
and V, and Breslow thicknesses from 1.30 mm to 1.8 cm.

Table 2 summarizes the staining results of all melanocytic
lesions. NKp46D1-Ig immunostains were negative in all
benign and malignant lesions in melanocytes as well as in
melanophages and in normal skin structures. This is expected
since we and others showed that in contrast to NKp46D2,
NKp46D1 is not involved in NKp46 binding to cellular/
pathogen ligands (Arnon et al., 2004; Bloushtain et al., 2004;
Mavoungou et al., 2007). Since staining with NKp46D1-Ig
was negative, positive staining results with NKp46D2-Ig
cannot be attributed to staining artifacts such as binding of
the Fc portion of the fusion protein to Fc receptors expressed
by melanocytes or melanophages; rather, positive staining
with NKp46D2-Ig indicates binding to NKp46 ligands.

Results of staining with NKp46D2-Ig were as follows:

(i) Dermoepidermal junction (DEJ): NKp46D2-Ig immu-
nostains were positive in the melanocytes of the DEJ in
benign as well as in malignant lesions but the intensity
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was stronger in DysN, SSMM, and lentigo maligna
(Table 2 and Figure 2).

(ii) Reticular dermis: the melanocytes present in the
reticular dermis were mostly negative in junctional
nevus, CN, and IN types (Table 2 and Figure 2); we
observed focal staining (intensity 1) with NKp46D2-Ig
only in 1/20 cases of junctional nevus, CN, and IN. For
DysN, 3/9 samples manifested focal-positive staining
of reticular melanocytes (intensity 1), whereas 6/9
were negative. In contrast, in the malignant melano-
cytic lesions, the deeper melanocytes were focally
positive (Table 2 and Figure 2).

(iii) Melanophages and background: in all the different
types of lesions, the melanophages showed a markedly

positive staining with NKp46D2-Ig (Table 2 and
Figure 2). The background represented by collagen,
adnexa, and normal squamous epithelium was stained
slightly. Yet, we assume that it may represent
nonspecific staining.

(iv) Normal melanocytes: the edges of most samples
(benign and malignant) contained normal melano-
cytes. In all cases, normal melanocytes were negative
for NKp46D2-Ig staining. Figure 2h shows normal
melanocytes (NKp46D2-Ig negative, marked with
arrow) adjacent to atypical and nested melanocytes
(NKp46D2-Ig positive) at the edge of SSMM, and
Figure 2i shows normal melanocytes at the edge of
DysN.
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Figure 1. Binding of NKp46-Ig to melanoma cell lines. (a) Staining of membrane-associated ligands. Human melanoma cells were incubated with NKp46D2-Ig,

washed, and stained with FITC anti-human Fc second antibody. PI was added to exclude dead cells. (b) Comparison between membrane-associated ligands and

total cell ligands to NKp46. A-375 cells were stained as above for membrane-associated ligands. For total cell ligands, cells were prefixed and permeabilized

with BD Cytofix/Cytoperm for staining with either NKp46D2-Ig or NKp46D1-Ig. (c) A-375 cells were grown on slides, fixed, and stained with NKp46D2-Ig and

NKp46D1-Ig for confocal immunofluorescence analysis. The arrow points to perinuclear staining and the arrowhead marks membrane-associated staining.

Bar¼20 mm.

974 Journal of Investigative Dermatology (2008), Volume 128

E Cagnano et al.
Recognition of Transformed Melanocytes by NKp46



Two cases of metastatic melanomas on lymph nodes were
also submitted for immunostains with NKp46D1-Ig and
NKp46D2-Ig; a mild-to-moderate positivity was observed in
atypical melanocytes and a stronger positivity in surrounding
macrophages. NKp46D1-Ig staining was negative also in
these sections. We further stained several samples with
NKp46-Ig; as expected, NKp46 staining phenotype followed
the NKp46D2 phenotype (data not shown).

The results obtained from the immunohistochemistry
studies indicated that normal melanocytes do not express
ligands for NKp46, whereas transformed melanocytes (both
benign and malignant) located in the active proliferation
zone (the DEJ) express NKp46 ligands. To verify these results,
we employed flow cytometry analysis on normal fresh human
melanocytes and on Mel-STR. Mel-STR were derived from
human melanocytes transformed to proliferate with comple-
mentary DNAs encoding SV40ER, hTERT, and oncogenic

RasG12V (Gupta et al., 2005). Transformed human melano-
cytes (Mel-STR) expressed ligands to NKp46 in levels
comparable to A-375 (Figure 3a). In contrast, fresh normal
human melanocytes were negative as compared to A-375
cells (Figure 3b).

DISCUSSION
A number of researchers, including our group, have shown
that the NKp46 NCR recognizes cellular ligands expressed on
a wide variety of tumor cell lines including melanoma cell
lines (Moretta et al., 2000; Arnon et al., 2001, 2004; Biassoni
et al., 2001; Mandelboim et al., 2001). The immunohisto-
chemical analysis of ligands for NKp46 on primary human
melanoma cells has never been performed. To explore the
expression of NKp46 ligands on primary human nevi and
melanomas, we employed the NKp46D2-Ig that stains
cellular ligands to NKp46 expressed by human cancer cells

Table 2. Staining of different melanocytic lesions with NKp46D2-Ig and NKp46D1-Ig

Mean D2 intensity Mean D2 intensity Mean D2 intensity D1 intensity

Lesion type No.

Melanocytes

in DEJ

Melanocytes in

reticular dermis Melanophages

Melanocytes/

melanophages

J N 1 1.0 0.0 3.0 0.0

C N 12 1.470.5 0.070.0 2.770.5 0.070.0

I N 7 NE 0.170.4 2.371.0 0.070.0

DysN 9 2.070.7 0.370.5 3.070.0 0.070.0

LM 2 2.070.0 1.070.0 3.070.0 0.070.0

SSMM 11 2.170.3 1.070.9 2.770.5 0.070.0

NM 9 1.770.51 1.170.6 2.670.5 0.070.0

CN, compound nevus; DEJ, dermoepidermal junction; DysN, dysplastic nevus; IN, intradermal nevus; JN, junctional nevus; LM, lentigo maligna; NE, not
exist; NM, nodular melanoma; SSMM, superficial spreading malignant melanoma.
Analysis of staining intensity and percentage of stained tumor cells (0, 1, 2, and 3) was performed as follows: 0: nil; 1: 10–20% strongly positive or 30–80%
weakly positive cells; 2: 20–50% strongly positive or 480% weakly positive; and 3: 450% strongly positive.
1DEJ results are for 7/9 samples, since DEJ did not exist in 2/9 samples.

Table 1. Features of melanocytic lesions

Lesion Sex Age range (years) Place Clinical staging

JN F 46 Foot

CN F (4)

M (8)

8–54 Back (7), cheek (2), neck, l,

thigh

IN F (5)

M (2)

22–63 Back, chest, chin, face, auricle

(2), leg

DysN F (2)

M (7)

12–61 Back (4), chest, abdomen (2),

ankle, flank

LM M (2) 76–79 Cheek (2) Clark II, in situ

SSMM F (6)

M (5)

23–79 Back (3), ankle, flank, arm,

forearm, leg (3), shoulder

Clark II (2), Clark III (7), Clark

IV(2)

NM F (5)

M (4)

47–83 Back, chest (2), head, arm (3),

shoulder, cheek

Clark IV (7), Clark V (2)

CN, compound nevus; DysN, dysplastic nevus; F, female; IN, intradermal nevus; JN, junctional nevus; LM, lentigo maligna; M, male; NM, nodular
melanoma; SSMM, superficial spreading malignant melanoma.
The number of samples are indicated in parenthesis. .
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(Arnon et al., 2004; Bloushtain et al., 2004). We provide early
evidence that ligands to NKp46 are expressed on human
primary melanocytic lesions. The NKp46 ligands expression
by the transformed melanocytes was mostly evident in
melanocytes proliferating in the DEJ zone (Table 2 and
Figure 2). This positive immunostaining in the DEJ was
evident in both benign and malignant melanocytic lesions.
Therefore, expression of NKp46 ligands could be a marker of
actively proliferating melanocytes. This observation corre-
lates with the report that NKp46 is involved in the recognition
of mitotic cells by NK (Nolte-’t Hoen et al., 2007). Normal
epidermal melanocytes did not express NKp46 ligands
(Figure 2h and i). The melanocytes present in the reticular
dermis were mostly negative in the following nevi types:
junctional nevus, CN, and IN (only 1/20 positive). Reticular
melanocytes in 3/9 DysN samples manifested focal positive
staining. In contrast, in most of the malignant melanocytic
lesions, the deeper melanocytes were focally positive (Table 2
and Figure 2). Therefore, the expression of NKp46 ligands by

reticular dermis’ melanocytes could be also related to the
grade of malignancy.

The strong expression of NKp46 ligands by melanophages,
in melanocytic lesions of all types and within lymph node
metastasis, but not in normal tissues (data not shown),
suggests that transformed melanocytes induce NKp46 ligands
expression on adjacent melanophages. Indeed, transformed
cell-mediated induction of different ligands and receptors on
tumor-adjacent cells is well established (Mueller and Fusenig,
2002). Ligands to NCRs in general, and NKp46 in particular,
may be expressed primarily as a consequence of cellular
stress, activation, viral infection, or tumor transformation
(Moretta and Moretta, 2004; Moretta et al., 2005). Therefore,
their expression is not unique to tumor cells and the
overexpression of NKp46 ligands by melanoma-adjacent
melanophages could represent the cellular stress imposed
on the melanophages by adjacent malignant melanocytes.
Yet, regulatory function in NK–dendritic cells interactions
was reported for the interaction between NK-expressed

a b c

d e f

g h i

Figure 2. Immunohistochemical staining of ligands to NKp46 on primary human melanocytic lesions. Staining procedure: following antigen retrieval, sections

were then stained with NKp46D2-Ig or with negative control NKp46D1-Ig, followed by biotinylated-goat anti-human Fcg and avidin-biotin horseradish

peroxidase complex. Substrate for horseradish peroxidase was aminoethyl carbazole (red color) and slides were counter-stained with hematoxylin. Sections

from SSMM were stained with (a) NKp46D2-Ig or with (b) NKp46D1-Ig. Sections from (c) nodular melanomas, (d) DysN, (e) CN, (f) and IN were stained

with NKp46D2-Ig. Sections from (g) SSMM, (h) SSMM edge, and (i) DysN edge were stained with NKp46D2-Ig. Melanophages are circled; arrows point

to normal epidermal melanocytes; DEJ is marked with asterisk; cross-marks nested melanocytes in reticular dermis. Bar¼ 50mm.
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NCR (NKp30) and its dendritic cell-expressed ligand.
Therefore, the NKp46 ligand induced on the melano-
phages could be employed for NK–melanophages regulatory
interactions.

The nature of NKp46 cellular ligands is not yet fully
understood. Previous reports suggested that membranal
heparan sulfate proteoglycans or membranal vimentin could
be involved in the binding of NKp46 to its cellular ligands
(Bloushtain et al., 2004; Zilka et al., 2005; Garg et al., 2006).
Previous immunohistochemical study revealed that anti-
vimentin Ab stained all neoplastic cells in all melanocytic
lesions (Puches et al., 1991), while we observed specific
pattern of staining (Table 2 and Figure 2). Contrary to
vimentin, heparan sulfate molecules are composed from
numerous different epitopes with differential expression in
different tissues. Previous immunohistochemical study of
human cutaneous melanocytic lesions with a panel of phage
display-derived anti-heparin/heparan sulfate antibodies iden-
tified three Abs (EW4E1, EW4G2, and EW4B7) that recognize
melanoma-associated heparan sulfate epitopes. In particular,
EW4E1 stained melanoma sections in the dermis and DEJ, yet
recognized only the DEJ zone in sections of atypical and
normal nevi (Smetsers et al., 2003). Therefore, EW4E1
antibody manifested staining pattern similar to that shown
for NKp46D2-Ig (Table 2 and Figure 2).

NKp46 interaction with its tumoral ligands is essential for
lysis of tumor cell by NK cells as was previously shown for
NKp46 ligands expressed by melanoma cell lines (Moretta
et al., 2000; Pende et al., 2002). Yet, the infrequent presence
of NK within DysN and primary melanoma (Kornstein et al.,
1987; Vetter et al., 2000) precludes the expected lysis of
melanocytic cells due to the expression of ligands for NKp46.
Similarly, we observed rare NK filtration in our samples and
no correlation to intensity of ligands to NKp46 (data not
shown). The interaction between NKp46 on NK cells and
their putative ligands on tumor target cells led to NK cell
apoptosis, and this event was abolished by blocking NKp46/
NKp46-ligand interaction by anti-NKp46-specific mAbs
(Poggi et al., 2005). Therefore, for NK, which do penetrate
into melanocytic lesions, the expected outcome of tumor
lysis could be hindered due to tumor-induced apoptosis of
NK cells mediated by NKp46 engagement.

It is clear that the major physiological function of tumoral-
expressed ligands to NK-activating receptors (NCRs and
NKG2D) is not to serve as target molecules for NK. Rather the
evolving tumor is acquiring these ligands during the selection
of tumor cells capable of expansion and proliferation. The
price that the tumor should pay by being more sensitive to NK
is easily compensated by the positive gains and by other
means that evolving tumor can acquire to inhibit NK.
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second antibody. PI was added to exclude dead cells. (b) Intracellular co-staining with anti-Melan-A and NKp46D2-Ig of normal human skin-derived cells (left,

Melan-Aþ gated) and A-375 cells (right). Cells from trypsin-digested normal human skin were left to recover for 1 hour in 371C with complete medium. A-375

and normal human skin cells were then prefixed, permeabilized, and co-stained with anti-Melan-A and NKp46D2-Ig followed by appropriate secondary

antibody.

www.jidonline.org 977

E Cagnano et al.
Recognition of Transformed Melanocytes by NKp46

http://www.jidonline.org


Heparan sulfate is involved in angiogenesis and cell
proliferation, and melanoma- and nevi-associated heparan
sulfate was reported (Smetsers et al., 2003). We previously
reported that tumor membrane-associated heparan sulfate is
involved in NKp46 recognition; the staining pattern we
observed for NKp46D2-Ig (Table 2 and Figure 2) correlates
with the pattern observed for EW4E1 Ab recognizing
melanoma- and nevi-associated heparan sulfate (Smetsers
et al., 2003; Bloushtain et al., 2004). Yet, the physiological
role of NKp46 ligands in the progression of malignancy
within melanocytic lesions should be further explored.

MATERIALS AND METHODS
Cells

Human melanoma cell lines used in this study are 1106mel

(Porgador et al., 1997) and A-375 (ATCC no. CRL-1619).

Ig-fusion proteins

The generation of NKp46D1-Ig and NKp46D2-Ig fusion protein has

been described previously (Arnon et al., 2001; Bloushtain et al.,

2004). Briefly, truncated fusion proteins of NKp46D1-Ig (including

the leader peptide 1–21 and residues 1–100) and NKp46D2-Ig

(residues 101–235) were generated by PCR amplification and cloned

into a mammalian expression vector containing the Fc portion of

human IgG1 as described previously. To allow expression of

NKp46D2-Ig, which lacks its original leader peptide sequence, we

added a methionine start codon and cloned the PCR-amplified

fragment of NKp46D2 in frame with the leader peptide of CD5.

Sequencing of the constructs revealed that all complementary DNAs

were in frame with the human Fc genomic DNA and were identical

to the reported sequences. For the production of fusion-Ig in Chinese

hamster ovary cells, the corresponding fragment was cloned into the

pcDNA 3.1 vector. After recloning, the highest protein-producing

clone was adapted for special serum-free medium (CHO-SFM II;

Gibco, Grand Island, NY), followed by optimization for growth in

large-scale cultures. Supernatants were collected and purified on

protein-G columns using fast-protein liquid chromatography.

Flow cytometry

Staining of melanoma cell lines using NCR-fusion protein, for

expression of membrane-associated ligands to NCR, was carried

out as described previously (Arnon et al., 2004; Bloushtain et al.,

2004; Hershkovitz et al., 2007). Briefly, cells were incubated with the

fusion-Ig for 2 hours at 41C, washed, and stained with FITC- or antigen-

presenting cell-conjugated F(ab0)2 goat anti-human-IgG Fc (Jackson

ImmunoResearch, West Grove, PA). For staining of total cell ligands,

harvested cells were prefixed and permeabilized with Cytofix/Cytoperm

(BD Biosciences, San Diego, CA), washed with Perm/Wash buffer (BD

Biosciences), and stained with the fusion-Ig, followed by secondary

antibody as above. For staining of fresh melanocytes, cells from trypsin-

digested normal human skin were recovered for 1 hour in 371C with

complete medium. Cells were then prefixed, permeabilized, and

washed as above. Anti-Melan-A (10ml, BioGenex, San Ramon, CA) and

fusion-Ig were co-added. Following incubation and wash, secondary

antibodies were added (FITC-conjugated F(ab0)2 goat anti-mouse IgG

for the anti-Melan-A and antigen-presenting cell goat anti-human as

above for the fusion-Ig). Flow cytometry was performed using a

FACSCalibur flow cytometer (Becton Dickinson, Mountain View, CA).

Confocal immunofluorescence analysis
Cells were allowed to settle on glass cover slides overnight at 371C

before fixation with ice-cold acetone/ethanol (1:1) for 10 minutes.

Specimens were then blocked with phosphate-buffered saline (PBS)/

10% FBS for 1 hour at room temperature to saturated nonspecific

sites. Cells were then incubated with 10 mg ml�1 of fusion-Ig proteins

in PBS/10% FBS for 1 and a half hours, washed with PBS, and stained

with Cy3-conjugated F(ab0)2 goat anti-human IgG secondary

antibodies (Jackson ImmunoResearch) in PBS/10% FBS for 1 hour

at room temperature. Specimens were washed with PBS and

mounted in the dark using mounting medium (Shandon, Pittsburgh,

PA). Confocal images were acquired using a CarlZeiss LSM510

microscope and processed using the CarlZeiss LSM510 software

(CarlZeiss, Jena, Germany).

Immunohistochemistry

Immunohistochemistry was preformed on archival sections of

formalin-fixed, paraffin-embedded nevi and melanomas. After

deparaffinization with xylol and hydration with decreasing concen-

tration of alcohol, endogenous peroxidase was quenched with 3%

H2O2 in methanol for 15 minutes. The sections were then washed

with ddH2O and antigen retrieval was achieved by warming the

sections for 15 minutes in commercial citrate buffer (DAKO,

Glostrup, Denmark) using microwave. The sections were then

washed with PBS and incubated for 20 minutes with normal goat

serum (Jackson ImmunoResearch) diluted 1:300 with PBS (NGS

stock). Fusion proteins diluted with NGS stock to a final concentra-

tion of 8mg ml�1 were added to the sections. After 60 minutes

incubation, the sections were washed three times with PBS and

incubated with biotin-goat anti-human Fcg (Jackson ImmunoRe-

search) diluted 1:2,000 in NGS stock for 30 minutes. Sections were

washed again and specific interaction was detected by incubating

the sections for 30 minutes with Elite ABC (Vector, Burlingame, CA).

Red chromogen dye (Zymed Labs, San Francisco, CA) substrate was

applied to the sections, incubated for 5 minutes, and finally washed

in water. Tissue sections were then counterstained with hematoxylin

and examined using light microscopy. Staining intensities are as

follows: 0: nil; 1: 10–20% strongly positive or 30–80% weakly

positive cells; 2: 20–50% strongly positive or 480% weakly positive;

3: 450% strongly positive.
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