40 research outputs found

    Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Get PDF
    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal individuals

    Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Get PDF
    Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites

    Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs

    Get PDF
    AbstractZoonotic visceral leishmaniasis, caused by the intracellular protozoan parasite Leishmania infantum, is a neglected tropical disease that is often fatal when untreated. Dogs are considered the main reservoir of L. infantum in zoonotic VL as the presence of infected dogs may increase the risk for human infection. Canine visceral leishmaniasis (CVL) is a major veterinary and public health problem in Southern Europe, Middle East and South America. Control of animal reservoirs relies on elimination of seropositive dogs in endemic areas. However, treatment of infected dogs is not considered a favorable approach as this can lead to emergence of drug resistance since the same drugs are used to treat human infections. Therefore, vaccination against CVL remains the best alternative in control of the animal reservoirs. In this study, we present data on the immunogenicity profile of a live attenuated parasite LdCen−/− in a canine infection model and compared it to that of Leishmune®, a commercially available recombinant vaccine. The immunogenicity of the LdCen−/− parasites was evaluated by antibody secretion, production of intracytoplasmic and secreted cytokines, activation and proliferation of T cells. Vaccination with LdCen−/− resulted in high immunogenicity as revealed by the higher IgGTotal, IgG1, and IgG2 production and higher lymphoproliferative response. Further, LdCen−/− vaccinated dogs showed higher frequencies of activated CD4+ and CD8+ T cells, IFN-γ production by CD8+ T cells, increased secretion of TNF-α and IL-12/IL-23p40 and decreased secretion of IL-4. These results contribute to the understanding of immunogenicity elicited by live attenuated L. donovani parasites and, consequently, to the development of effective vaccines against visceral leishmaniasis

    Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects

    No full text
    Leishmaniasis is a vector-borne parasitic disease caused by Leishmania parasites with a spectrum of clinical manifestations, ranging from skin lesions to severe visceral complications. Treatment of this infection has been extremely challenging with the concurrent emergence of drug resistance. The differential gene expression and the discrepancies in protein functions contribute to the appearance of 2 distinct phenotypes: resistant and sensitive, but the current diagnostic tools fail to differentiate between them. The identification of gene expression patterns and molecular mechanisms coupled with antimony (Sb) resistance can be leveraged to prompt diagnosis and select the most effective treatment methods. The present study attempts to use comparative expression of Sb resistance-associated genes in resistant and sensitive Leishmania, to disclose their relative abundance in clinical or in vitro selected isolates to gain an understanding of the molecular mechanisms of Sb response/resistance. Data suggest that the analysis of resistance gene expression would verify the Sb resistance or susceptibility only to a certain extent; however, none of the individual expression patterns of the studied genes was diagnostic as a biomarker of Sb response of Leishmania. The findings highlighted will be useful in bridging the knowledge gap and discovering innovative diagnostic tools and novel therapeutic targets

    Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins.

    No full text
    Several investigators have independently identified membrane-associated aminopeptidases in the midgut of insect larvae as the initial interacting ligand to the insecticidal crystal proteins of Bacillus thuringiensis. Though several isoenzymes of aminopeptidases have been identified from the midgut of an insect and their corresponding cDNA cloned, only one of the isoform has been expressed heterologously and studied for its binding to Cry toxins. Here we report the cloning and expression of two aminopeptidases N from Helicoverpa armigera (American cotton bollworm) (HaAPNs). The full-length cDNA of H. armigera APN1 (haapn1) is 3205 bp in size and encodes a 1000-amino-acid protein, while H. armigera APN2 (haapn2) is 3116 bp in size and corresponds to a 1012-amino-acid protein. Structurally these proteins show sequence similarity to other insect aminopeptidases and possess characteristic aminopeptidase motifs. Both the genes have been expressed in Trichoplusia ni (cabbage looper) cells using a baculovirus expression vector. The expressed aminopeptidases are membrane-associated, catalytically active and glycosylated. Ligand-blot analysis of both these aminopeptidases with bioactive Cry1Aa, Cry1Ab and Cry1Ac proteins displayed differential interaction. All the three toxins bound to HaAPN1, whereas only Cry1Ac interacted with HaAPN2. This is the first report demonstrating differential Cry-toxin-binding abilities of two different aminopeptidases from a susceptible insect

    Genomic and Transcriptomic Analysis for Identification of Genes and Interlinked Pathways Mediating Artemisinin Resistance in Leishmania donovani

    No full text
    Current therapy for visceral leishmaniasis (VL), compromised by drug resistance, toxicity, and high cost, demands for more effective, safer, and low-cost drugs. Artemisinin has been found to be an effectual drug alternative in experimental models of leishmaniasis. Comparative genome and transcriptome analysis of in vitro-adapted artesunate-resistant (K133AS-R) and -sensitive wild-type (K133WT) Leishmania donovani parasites was carried out using next-generation sequencing and single-color DNA microarray technology, respectively, to identify genes and interlinked pathways contributing to drug resistance. Whole-genome sequence analysis of K133WT vs. K133AS-R parasites revealed substantial variation among the two and identified 240 single nucleotide polymorphisms (SNPs), 237 insertion deletions (InDels), 616 copy number variations (CNVs) (377 deletions and 239 duplications), and trisomy of chromosome 12 in K133AS-R parasites. Transcriptome analysis revealed differential expression of 208 genes (fold change ≥ 2) in K133AS-R parasites. Functional categorization and analysis of modulated genes of interlinked pathways pointed out plausible adaptations in K133AS-R parasites, such as (i) a dependency on lipid and amino acid metabolism for generating energy, (ii) reduced DNA and protein synthesis leading to parasites in the quiescence state, and (iii) active drug efflux. The upregulated expression of cathepsin-L like protease, amastin-like surface protein, and amino acid transporter and downregulated expression of the gene encoding ABCG2, pteridine receptor, adenylatecyclase-type receptor, phosphoaceylglucosamine mutase, and certain hypothetical proteins are concordant with genomic alterations suggesting their potential role in drug resistance. The study provided an understanding of the molecular basis linked to artemisinin resistance in Leishmania parasites, which may be advantageous for safeguarding this drug for future use
    corecore