47 research outputs found

    Fluorescent analogues of Human α-Calcitonin Gene-Related Peptide with vasodilator potency

    Get PDF
    Human α-calcitonin gene-related peptide (h-α-CGRP) is a highly potent vasodilator peptide that belongs to the family of calcitonin peptides. There are two forms of CGRP receptors in humans and rodents: α-CGRP receptor predominately found in the cardiovascular system and β-CGRP receptor predominating in the gastrointestinal tract. The CGRP receptors are primarily localized to C and Aδ sensory fibers, where they are involved in nociceptive transmission and migraine pathophysiology. These fibers are found both peripherally and centrally, with extensive perivascular location. The CGRP receptors belong to the class B G-protein-coupled receptors, and they are primarily associated to signaling via Gα proteins. The objectives of the present work were: (i) synthesis of three single-labelled fluorescent analogues of h-α-CGRP by 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis, and (ii) testing of their biological activity in isolated human, mouse, and rat arteries by using a small-vessel myograph setup. The three analogues were labelled with 5(6)-carboxyfluorescein via the spacer 6-aminohexanoic acid at the chain of Lys24 or Lys35. Circular dichroism (CD) experiments were performed to obtain information on the secondary structure of these fluorescently labelled peptides. The CD spectra indicated that the folding of all three analogues was similar to that of native α-CGRP. The three fluorescent analogues of α-CGRP were successfully prepared with a purity of >95%. In comparison to α-CGRP, the three analogues exhibited similar efficacy, but different potency in producing a vasodilator effect. The analogue labelled at the N-terminus proved to be the most readily synthesized, but it was found to possess the lowest vasodilator potency. The analogues labelled at Lys35 or Lys24 exhibited an acceptable reduction in potency (i.e., 3–5 times and 5–10 times less potent, respectively), and thus they have potential for use in further investigations of receptor internalization and neuronal reuptake

    Chronic Administration of the Glucagon-Like Peptide-1 Analog, Liraglutide, Delays the Onset of Diabetes and Lowers Triglycerides in UCD-T2DM Rats

    Get PDF
    ObjectiveThe efficacy of liraglutide, a human glucagon-like peptide-1 (GLP-1) analog, to prevent or delay diabetes in UCD-T2DM rats, a model of polygenic obese type 2 diabetes, was investigated.Research design and methodsAt 2 months of age, male rats were divided into three groups: control, food-restricted, and liraglutide. Animals received liraglutide (0.2 mg/kg s.c.) or vehicle injections twice daily. Restricted rats were food restricted to equalize body weights to liraglutide-treated rats. Half of the animals were followed until diabetes onset, whereas the other half of the animals were killed at 6.5 months of age for tissue collection.ResultsBefore diabetes onset energy intake, body weight, adiposity, and liver triglyceride content were higher in control animals compared with restricted and liraglutide-treated rats. Energy-restricted animals had lower food intake than liraglutide-treated animals to maintain the same body weights, suggesting that liraglutide increases energy expenditure. Liraglutide treatment delayed diabetes onset by 4.1 ± 0.8 months compared with control (P < 0.0001) and by 1.3 ± 0.8 months compared with restricted animals (P < 0.05). Up to 6 months of age, energy restriction and liraglutide treatment lowered fasting plasma glucose and A1C concentrations compared with control animals. In contrast, liraglutide-treated animals exhibited lower fasting plasma insulin, glucagon, and triglycerides compared with both control and restricted animals. Furthermore, energy-restricted and liraglutide-treated animals exhibited more normal islet morphology.ConclusionsLiraglutide treatment delays the development of diabetes in UCD-T2DM rats by reducing energy intake and body weight, and by improving insulin sensitivity, improving lipid profiles, and maintaining islet morphology

    The Microbiotic Highway to Health—New Perspective on Food Structure, Gut Microbiota, and Host Inflammation

    No full text
    This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the “fiber-encapsulated nutrient formulation„, and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function

    The effects of CGRP in vascular tissue - Classical vasodilation, shadowed effects and systemic dilemmas

    No full text
    Vascular tissue consists of endothelial cells, vasoactive smooth muscle cells and perivascular nerves. The perivascular sensory neuropeptide CGRP has demonstrated potent vasodilatory effects in any arterial vasculature examined so far, and a local protective CGRP-circuit of sensory nerve terminal CGRP release and smooth muscle cell CGRP action is evident. The significant vasodilatory effect has shadowed multiple other effects of CGRP in the vascular tissue and we therefore thoroughly review vascular actions of CGRP on endothelial cells, vascular smooth muscle cells and perivascular nerve terminals. The actions beyond vasodilation includes neuronal re-uptake and neuromodulation, angiogenic, proliferative and antiproliferative, pro- and anti-inflammatory actions which vary depending on the target cell and anatomical location. In addition to the classical perivascular nerve-smooth muscle CGRP circuit, we review existing evidence for a shadowed endothelial autocrine pathway for CGRP. Finally, we discuss the impact of local and systemic actions of CGRP in vascular regulation and protection from hypertensive and ischemic heart conditions with special focus on therapeutic CGRP agonists and antagonists

    Vascular pathology of large cerebral arteries in experimental subarachnoid hemorrhage : Vasoconstriction, functional CGRP depletion and maintained CGRP sensitivity

    No full text
    Subarachnoid hemorrhage (SAH) is associated with increased cerebral artery sensitivity to vasoconstrictors and release of the perivascular sensory vasodilator CGRP. In the current study the constrictive phenotype and the vasodilatory effects of exogenous and endogenous perivascular CGRP were characterized in detail applying myograph technology to cerebral artery segments isolated from experimental SAH and sham-operated rats. Following experimental SAH, cerebral arteries exhibited increased vasoconstriction to endothelin-1, 5-hydroxytryptamine and U46419. In addition, depolarization-induced vasoconstriction (60 mM potassium) was significantly increased, supporting a general SAH-associated vasoconstrictive phenotype. Using exogenous CGRP, we demonstrated that sensitivity of the arteries to CGRP-induced vasodilation was unchanged after SAH. However, vasodilation in response to capsaicin (100 nM), a sensory nerve activator used to release perivascular CGRP, was significantly reduced by SAH (P = 0.0079). Because CGRP-mediated dilation is an important counterbalance to increased arterial contractility, a reduction in CGRP release after SAH would exacerbate the vasospasms that occur after SAH. A similar finding was obtained with artery culture (24 h), an in vitro model of SAH-induced vascular dysfunction. The arterial segments maintained sensitivity to exogenous CGRP but showed reduced capsaicin-induced vasodilation. To test whether a metabolically stable CGRP analogue could be used to supplement the loss of perivascular CGRP release in SAH, SAX was systemically administered in our in vivo SAH model. SAX treatment, however, induced CGRP-desensitization and did not prevent the development of vasoconstriction in cerebral arteries after SAH
    corecore