8 research outputs found

    Mechanical and absorption properties of commercial hydrogel dressings

    No full text

    Polymerization shrinkage and compressive strength of microhybrid dental composite

    No full text

    Surface Testing of Dental Biomaterials—Determination of Contact Angle and Surface Free Energy

    No full text
    The key goal of this study was to characterize surface properties of chosen dental materials on the base on the contact angle measurements and surface free energy calculations. Tested materials were incubated in the simulated oral environment and drinks to estimate an influence of conditions similar to those in the oral cavity on wetting and energetic state of the surface. Types of materials were as follows: denture acrylic resins, composite and PET-G dental retainer to compare basic materials used in a prosthetics, restorative dentistry and orthodontics. The sessile drop method was used to measure the contact angle with the use of several liquids. Values of the surface free energies were estimated based on the Owens–Wendt, van Oss–Chaudhury–Good and Zisman’s methods. The research showed that surface wetting depends on the material composition and storage conditions. The most significance changes of CA were observed for acrylic resins (84.7° ± 3.8° to 65.5° ± 3.5°) and composites (58.8° ± 4.1° to 49.1° ± 5.7°) stored in orange juice, and for retainers (81.9° ± 1.8° to 99.6° ± 4.5°) incubated in the saline solution. An analysis of the critical surface energy showed that acrylic materials are in the zone of good adhesion (values above 40 mJ/m2), while BIS-GMA composites are in the zone of poor adhesion (values below 30 mJ/m2). Study of the surface energy of different dental materials may contribute to the development of the thermodynamic model of bacterial adhesion, based on the surface free energies, and accelerate the investigation of biomaterial interaction in the biological environment

    Mechanical Behavior and Morphological Study of Polytetrafluoroethylene (PTFE) Composites under Static and Cyclic Loading Condition

    No full text
    The key goal of this study was to characterize polytetrafluoroethylene (PTFE) based composites with the addition of bronze particles and mineral fibers/particles. The addition of individual fillers was as follows: bronze—30–60 wt.%, glass fibers—15–25 wt.%, coke flakes—25 wt.% and graphite particles—5 wt.%. Both static and dynamic tests were performed and the obtained results were compared with the microscopic structure of the obtained fractures. The research showed that the addition of 60 wt.% bronze and other mineral fillers improved the values obtained in the static compression test and in the case of composites with 25 wt.% glass fibers the increase was about 60%. Fatigue tests have been performed for the compression-compression load up to 100,000 cycles. All tested composites show a significant increase in the modulus as compared to the values obtained in the static compression test. The highest increase in the modulus in the dynamic test was obtained for composites with 25 wt.% of glass fibers (increase by 85%) and 25 wt.% of coke flakes (increase by 77%), while the lowest result was obtained for the lowest content of bronze particles (decrease by 8%). Dynamic tests have shown that composites with “semi-spherical” particles are characterized by the longest service life and a slower fatigue crack propagation rate than in the case of the long glass fibers. In addition, studies have shown that particles with smaller sizes and more spherical shape have a higher ability to dissipate mechanical energy, which allows their use in friction nodes. On the other hand, composites with glass fiber and graphite particles can be successfully used in applications requiring high stiffness with low amplitude vibrations

    Examination of Low-Cyclic Fatigue Tests and Poisson’s Ratio Depending on the Different Infill Density of Polylactide (PLA) Produced by the Fused Deposition Modeling Method

    No full text
    This article examines the impact of fatigue cycles on polylactide samples produced by 3D printing using the FDM method. Samples were printed in three infill degree variants: 50%, 75% and 100%. To compere the influence of infill degree on PLA properties, several tests, including the uniaxial tensile test, the low-cycle fatigue test, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), were conducted. Poisson’s ratio has also been studied. Single hysteresis loops were summed to obtain the entire low-fatigue cycle. The infill of density influenced all compared mechanical parameters. The decrease in infill degree caused the reduction of Young’s modulus and shear modulus. For a 100% degree of sample infill, a higher number of transferred load cycles were observed compared to PLA with 75% and 50% of infill. Additionally, the value of the transferred cyclic load before fatigue failure and the dissipation of mechanical energy was the highest for 100% of infill. It is also worth noting that fatigue tests can positively affect the appearance of the PLA structure. Obviously, it depends on the number of load cycles and the infill density. It causes that if the goal is to transfer as much load as possible over a long period of time, the maximum filling of the printed element should be used

    Analysis of the Effect of Photo and Hydrodegradation on the Surface Morphology and Mechanical Properties of Composites Based on PLA and PHI Modified with Natural Particles

    No full text
    Biodegradable polymer materials are increasingly used in the packaging industry due to their good properties and low environmental impact. Therefore, the work was performed on the injection molding of the bio-based composites of polylactide (PLA) and polyhydroxyalcanates (PHI) modified with two phases: reinforcing (walnut shell flour and cellulose) and coloring (beta carotene and anthocyanin). The produced materials were subjected to wide mechanical characteristics—tensile, flexural, and fatigue tests. Additionally, the influence of photo and hydrodegradation on the change of the surface structure and mechanical properties of the composites was assessed. The addition of natural fillers contributed to the improvement of the stiffness of the tested composites. PHI composites withstood a higher number of cycles during cyclic loading, but the stress values obtained in the static tensile test were higher for PLA composites. Moreover, a clear change of color was observed after both the photo and hydrodegradation process for all tested materials; however, after the degradation processes, the filler-modified materials underwent greater discoloration. For the composites based on PHI, the type of degradation did not affect the mechanical properties. On the other hand, for PLA composites, hydrolytic degradation contributed to a higher decrease in properties—the decrease in tensile strength for unmodified PLA after photodegradation was 4%, while after hydrodegradation it was 24%
    corecore