38 research outputs found

    GLP-1 receptor stimulation of the lateral parabrachial nucleus reduces food intake: neuroanatomical, electrophysiological, and behavioral evidence.

    Get PDF
    The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN

    Excessive milk production during breast-feeding prior to breast cancer diagnosis is associated with increased risk for early events

    Get PDF
    Breast-feeding is a known protective factor against breast cancer. Breast-feeding duration is influenced by hormone levels, milk production, and lifestyle factors. The aims were to investigate how breast-feeding duration and milk production affected tumor characteristics and risk for early breast cancer events in primary breast cancer patients. Between 2002 and 2008, 634 breast cancer patients in Lund, Sweden, took part in an ongoing prospective cohort study. Data were extracted from questionnaires, pathology reports, and patients’ charts from 592 patients without preoperative treatment. Breast-feeding duration ≀12 months of the first child was associated with higher frequency of ER+/PgR+ tumors (P=0.02). Median follow-up time was 4.9 years. Higher risk for early events was observed for breast-feeding duration of first child >12 months (LogRank P=0.001), total breast-feeding duration >12 months (LogRank P=0.008), as well as ‘excessive milk production’ during breast-feeding of the first child (LogRank P=0.001). Patients with ‘almost no milk production’ had no events. In a multivariable model including both ‘excessive milk production’ and breast-feeding duration of the first child >12 months, both were associated with a two-fold risk for early events, adjusted HRs 2.33 (95% CI: 1.25-4.36) and 2.39 (0.97-5.85), respectively, while total breast-feeding duration was not. ‘Excessive milk production’ was associated with a two-fold risk of early distant metastases, adjusted HR 2.59 (1.13-5.94), but not duration. In conclusion, ‘excessive milk production’ during breast-feeding was associated with higher risk for early events independent of tumor characteristics, stressing the need to consider host factors in the evaluation of prognostic markers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-2-298) contains supplementary material, which is available to authorized users

    Effect of antiretroviral treatment on blood-brain barrier integrity in HIV-1 infection

    Get PDF
    Background Blood-brain barrier (BBB) injury is prevalent in patients with HIV-associated dementia (HAD) and is a frequent feature of HIV encephalitis. Signs of BBB damage are also sometimes found in neuroasymptomatic HIV-infected individuals without antiretroviral therapy (ART). The aim of this study was to investigate the integrity of the BBB before and after initiation of ART in both neuroasymptomatic HIV infection and in patients with HAD. Methods We determined BBB integrity by measuring cerebrospinal fluid (CSF)/plasma albumin ratios in archived CSF samples prior to and after initiation of ART in longitudinally-followed neuroasymptomatic HIV-1-infected individuals and patients with HAD. We also analyzed HIV RNA in blood and CSF, IgG Index, CSF WBC counts, and CSF concentrations of beta 2-micoglobulin, neopterin, and neurofilament light chain protein (NfL). Results We included 159 HIV-infected participants; 82 neuroasymptomatic individuals and 77 with HAD. All neuroasymptomatic individuals (82/82), and 10/77 individuals with HAD, were longitudinally followed with a median (interquartile range, IQR) follow-up of 758 (230-1752) days for the neuroasymptomatic individuals, and a median (IQR) follow-up of 241 (50-994) days for the individuals with HAD. Twelve percent (10/82) of the neuroasymptomatic individuals and 80% (8/10) of the longitudinally-followed individuals with HAD had elevated albumin ratios at baseline. At the last follow-up, 9% (7/82) of the neuroasymptomatic individuals and 20% (2/10) of the individuals with HAD had elevated albumin ratios. ART significantly decreased albumin ratios in both neuroasymptomatic individuals and in patients with HAD. Conclusion These findings indicate that ART improves and possibly normalizes BBB integrity in both neuroasymptomatic HIV-infected individuals and in patients with HAD

    Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

    Get PDF
    OBJECTIVE: Although blood-brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. METHODS: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART). RESULTS: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis. CONCLUSIONS: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals

    Preproglucagon neurons in the hindbrain have IL-6 Receptor α (IL-6Rα) and show Ca 2+ influx in response to IL-6

    Get PDF
    Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space

    Interleukin-6 in the central amygdala is bioactive and co-localised with glucagon-like peptide-1 receptor

    Get PDF
    Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centres for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin (IL)-6 can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 (GLP-1) receptor (R) stimulation in the brain, although the sites of these effects are largely unknown. In the present study, we used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibres co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha (IL-6R alpha) was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and demonstrate increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6R alpha present in this nucleus

    Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study

    Get PDF
    Background: HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. / Methods: We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. / Results: LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. / Conclusions: In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality

    Cerebrospinal fluid levels of glial marker YKL-40 strongly associated with axonal injury in HIV infection

    Get PDF
    Background: HIV-1 infects the central nervous system (CNS) shortly after transmission. This leads to a chronic intrathecal immune activation. YKL-40, a biomarker that mainly reflects activation of astroglial cells, has not been thoroughly investigated in relation to HIV. The objective of our study was to characterize cerebrospinal fluid (CSF) YKL-40 in chronic HIV infection, with and without antiretroviral treatment (ART). Methods: YKL-40, neopterin, and the axonal marker neurofilament light protein (NFL) were analyzed with ELISA in archived CSF samples from 120 HIV-infected individuals (85 untreated neuroasymptomatic patients, 7 with HIVassociated dementia, and 28 on effective ART) and 39 HIV-negative controls. Results: CSF YKL-40 was significantly higher in patients with HIV-associated dementia compared to all other groups. It was also higher in untreated neuroasymptomatic individuals with CD4 cell count < 350 compared to controls. Significant correlations were found between CSF YKL-40 and age (r = 0.38, p < 0.001), CD4 (r = − 0.36, p < 0. 001), plasma HIV RNA (r = 0.35, p < 0.001), CSF HIV RNA (r = 0.35, p < 0.001), CSF neopterin (r = 0.40, p < 0.001), albumin ratio (r = 0.44, p < 0.001), and CSF NFL (r = 0.71, p < 0.001). Age, CD4 cell count, albumin ratio, and CSF HIV RNA were found as independent predictors of CSF YKL-40 concentrations in multivariable analysis. In addition, CSF YKL-40 was revealed as a strong independent predictor of CSF NFL together with age, CSF neopterin, and CD4 cell count. Conclusions: CSF YKL-40 is a promising biomarker candidate for understanding the pathogenesis of HIV in the CNS. The strong correlation between CSF YKL-40 and NFL suggests a pathogenic association between astroglial activation and axonal injury, and implies its utility in assessing the prognostic value of YKL-40
    corecore