3 research outputs found

    Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts

    Get PDF
    β-Glucans are considered candidates for the medication in different human pathologies. In this work, we have purified β-glucan from a selected barley line and tested their effects in primary human dermal fibroblasts. Unexpectedly, we have observed that this compound promoted a short-transitory proliferation arrest at 24 h after its addition on the medium. We have determined that this transitory arrest was dependent on the cell-cycle regulator protein Retinoblastoma. Moreover, dermal fibroblasts increase their migration capacities at 24 h after barley β-glucan addition. Also, we have described that barley β-glucan strongly reduced the ability of fibroblasts to attach and to spread on cell plates. Our data indicates that barley β-glucan signal induces an early response in HDF cells favoring migration versus proliferation. This feature is consistent with our observation that the topical addition of our barley β-glucan in vivo accelerates the wound closure in mouse skin

    Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis

    No full text
    A major stress response influenced by microRNAs (miRNAs) is senescence, a state of indefinite growth arrest triggered by sublethal cell damage. Here, through bioinformatic analysis and experimental validation, we identified miR-340-5p as a novel miRNA that foments cellular senescence. miR-340-5p was highly abundant in diverse senescence models, and miR-340-5p overexpression in proliferating cells rendered them senescent. Among the target mRNAs, miR-340-5p prominently reduced the levels of LBR mRNA, encoding lamin B receptor (LBR). Loss of LBR by ectopic overexpression of miR-340-5p derepressed heterochromatin in lamina-associated domains, promoting the expression of DNA repetitive elements characteristic of senescence. Importantly, overexpressing miR-340-5p enhanced cellular sensitivity to senolytic compounds, while antagonization of miR-340-5p reduced senescent cell markers and engendered resistance to senolytic-induced cell death. We propose that miR-340-5p can be exploited for removing senescent cells to restore tissue homeostasis and mitigate damage by senescent cells in pathologies of human aging
    corecore