7 research outputs found

    Recent Green Technologies in Natural Stilbenoids Production and Extraction: The Next Chapter in the Cosmetic Industry

    No full text
    Stilbenoids are well-known phytoalexins in the group of polyphenolic compounds. Because of their potent bioactivities, including antioxidant, antityrosinase, photoprotective, and antibacterial activities, stilbenoids are utilized as pharmaceutical active ingredient in cosmetic products. Thus, the demand for stilbenoids in the cosmetic industry is increasing. The main sources of stilbenoids are plants. Although plants are green and sustainable source materials, some of them do not allow a regular and constant supply due to seasonal and geographic reasons. Stilbenoids typically have been extracted by conventional organic solvent extraction, and then purified by separation techniques. This method is unfriendly to the environment and may deteriorate human health. Hence, the procedures called “green technologies” are focused on novel extraction methods and sustainable stilbenoids production by using biotechnology. In this review, the chemical structures together with the biosynthesis and current plant sources of resveratrol, oxyresveratrol, and piceatannol are described. Furthermore, recent natural deep eutectic solvents (NADES) for green extraction as well as plant cell cultures for the production of those stilbene compounds are updated

    Taxonomic Notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) Species Complex in Thailand

    No full text
    ‘Mahat’ is a well-known medicinal plant utilized in Thailand. The Thai name ‘Mahat’ has been used in many scientific articles for years. However, it is, unpredictably, a homonym of two scientific names in Flora of Thailand, i.e., A. lacucha and A. thailandicus. Additionally, both species are complex due to their high morphological variation. This causes difficulties in species identification especially when this Thai name is referred to as the scientific name for research publication, quality control of pharmaceutical raw materials, and registration of pharmaceutical products. In this study, we scrutinized the taxonomy of ‘Mahat’ by detailed examination of its morphology and distribution, including molecular and qualitative phytochemical studies. Leaf surfaces were inspected using scanning electron microscopy. The phylogeny of both species was studied using DNA sequences of nuclear and plastid regions. Chromatographic fingerprints, focusing on the major active compound oxyresveratrol, were identified using high-performance liquid chromatography. According to our current study, phylogenetic evidence showed that some samples of both species were clustered together in the same clade and phytochemical fingerprints were almost identical. These results are valuable data for taxonomic revision in the near future and reveal the possible utilization of A. thailandicus as a new material source of oxyresveratrol in the pharmaceutical industry

    Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species

    No full text
    Plants produce a variety of floral specialized (secondary) metabolites with roles in several physiological functions, including light-protection, attraction of pollinators, and protection against herbivores. Pigments and volatiles synthesized in the petal have been focused on and characterized as major chemical factors influencing pollination. Recent advances in plant metabolomics have revealed that the major floral specialized metabolites found in land plant species are hydroxycinnamates, phenolamides, and flavonoids albeit these are present in various quantities and encompass diverse chemical structures in different species. Here, we analyzed numerous floral specialized metabolites in 20 different Brassicaceae genotypes encompassing both different species and in the case of crop species different cultivars including self-compatible (SC) and self-incompatible (SI) species by liquid chromatography-mass spectrometry (LC-MS). Of the 228 metabolites detected in flowers among 20 Brassicaceae species, 15 metabolite peaks including one phenylacyl-flavonoids and five phenolamides were detected and annotated as key metabolites to distinguish SC and SI plant species, respectively. Our results provide a family-wide metabolic framework and delineate signatures for compatible and incompatible genotypes thereby providing insight into evolutionary aspects of floral metabolism in Brassicaceae species

    Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species

    No full text
    Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species
    corecore