160 research outputs found

    A stress free model for residual stress assessment using thermoelastic stress analysis

    Get PDF
    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ?T/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ?T/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA

    The LCOGT Network

    Get PDF
    Motivated by the increasing need for observational resources for the study of time varying astronomy, the Las Cumbres Observatory Global Telescope (LCOGT) is a private foundation, whose goal is to build a global network of robotic telescopes for scientific research and education. Once completed, the network will become a unique tool, capable of continuous monitoring from both the Northern and Southern Hemispheres. The network currently includes 2 x 2.0 m telescopes, already making an impact in the field of exoplanet research. In the next few years they will be joined by at least 12 x 1.0 m and 20 x 0.4 m telescopes. The increasing amount of LCOGT observational resources in the coming years will be of great service to the astronomical community in general, and the exoplanet community in particular.Comment: 2 pages, 1 figure, to appear in the proceedings of IAU Symposium 276 "The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution

    Late Holocene uplift of Rhodes, Greece: evidence for a large tsunamigenic earthquake and the implications for the tectonics of the eastern Hellenic Trench System

    Get PDF
    Several large earthquakes in the Hellenic subduction zone have been documented in historical records from around the eastern Mediterranean, but the relative seismic quiescence of the region over the period of instrumental observation means that the exact locations of these earthquakes and their tectonic significance are not known. We present AMS radiocarbon dates from uplifted late Holocene palaeoshorelines from the island of Rhodes, showing that uplift is most consistent with a single large (MW ≥ 7:7) reverse-faulting earthquake between about 2000 BC and 200 BC. Analysis of the uplift treating the earthquake as a dislocation in an elastic half space shows a predominantly a reverse-faulting event with a slip vector oblique to the direction of convergence between Rhodes and Nubia. We suggest that the fault responsible for the uplift dips at an angle of 30-60° above the more gently-dipping oblique subduction interface. The highly oblique convergence across the eastern Hellenic plate boundary zone appears to be partitioned into reverse slip on faults that strike parallel to the boundary and strike-parallel or oblique slip on the subduction interface. Hydrodynamical simulation of tsunami propagation from a range of tectonically plausible sources suggests that earthquakes on the fault uplifting Rhodes represent a significant tsunami hazard for Rhodes and SW Turkey, and also possibly for Cyprus and the Nile Delta.AH is supported by a Shell Studentship. This study forms part of the NERC- and ESRC-funded project "Earthquakes Without Frontiers".This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/gji/ggv30

    Subduction and vertical coastal motions in the eastern Mediterranean

    Get PDF
    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia–Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean–Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern Mediterranean are supported by mantle convection. However, whether the convection is time dependent and whether its pattern moves relative to Nubia are uncertain, and its contribution to present-day rates of vertical coastal motions is therefore hard to constrain. The observed extension of the overriding material in the subduction system is probably partly related to buoyancy forces arising from topographic contrasts between the Aegean, Anatolia and the Mediterranean seafloor, but the reasons for regional variations are less clear

    Late Holocene uplift of Rhodes, Greece: evidence for a large tsunamigenic earthquake and the implications for the tectonics of the eastern Hellenic Trench System

    Get PDF
    Several large earthquakes in the Hellenic subduction zone have been documented in historical records from around the eastern Mediterranean, but the relative seismic quiescence of the region over the period of instrumental observation means that the exact locations of these earthquakes and their tectonic significance are not known. We present AMS radiocarbon dates from uplifted late Holocene palæoshorelines from the island of Rhodes, showing that uplift is most consistent with a single large (MW ≥ 7.7) reverse-faulting earthquake between about 2000 BC and 200 BC. Analysis of the uplift treating the earthquake as a dislocation in an elastic half-space shows a predominantly reverse-faulting event with a slip vector oblique to the direction of convergence between Rhodes and Nubia. We suggest that the fault responsible for the uplift dips at an angle of 30–60° above the more gently dipping oblique subduction interface. The highly oblique convergence across the eastern Hellenic plate boundary zone appears to be partitioned into reverse slip on faults that strike parallel to the boundary and strike-parallel or oblique slip on the subduction interface. Hydrodynamical simulation of tsunami propagation from a range of tectonically plausible sources suggests that earthquakes on the fault uplifting Rhodes represent a significant tsunami hazard for Rhodes and SW Turkey, and also possibly for Cyprus and the Nile Delta

    Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    Get PDF
    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment

    Cultivating compassion through compassion circles: learning from experience in mental health care in the NHS

    Get PDF
    Purpose: This paper aims to discuss the importance of compassion in health care and experiences of Compassion Circles (CCs) in supporting it, placing this into the national policy context of the National Health Service (NHS), whilst focusing on lessons from using the practice in mental health care. Design/methodology/approach: This conceptual paper is a discussion of the context of compassion in health care and a description of model and related concepts of CCs. This paper also discusses lessons from implementation of CCs in mental health care. Findings: CCs were developed from an initial broad concern with the place of compassion and well-being in communities and organisations, particularly in health and social care after a number of scandals about failures of care. Through experience CCs have been refined into a flexible model of supporting staff in mental health care settings. Experience to date suggests they are a valuable method of increasing compassion for self and others, improving relationships between team members and raising issues of organisational support to enable compassionate practice. Research limitations/implications: This paper is a discussion of CCs and their conceptual underpinnings and of insights and lessons from their adoption to date, and more robust evaluation is required. Practical implications: As an emergent area of practice CCs have been seen to present a powerful and practical approach to supporting individual members of staff and teams. Organisations and individuals might wish to join the community of practice that exists around CCs to consider the potential of this intervention in their workplaces and add to the growing body of learning about it. It is worth further investigation to examine the impact of CCs on current concerns with maintaining staff well-being and engagement, and, hence, on stress, absence and the sustainability of work environments over time. Social implications: CCs present a promising means of developing a culture and practice of more compassion in mental health care and other care contexts. Originality/value: CCs have become supported in national NHS guidance and more support to adopt, evaluate and learn from this model is warranted. This paper is a contribution to developing a better understanding of the CCs model, implementation lessons and early insights into impact

    RoboPianist: A Benchmark for High-Dimensional Robot Control

    Full text link
    We introduce a new benchmarking suite for high-dimensional control, targeted at testing high spatial and temporal precision, coordination, and planning, all with an underactuated system frequently making-and-breaking contacts. The proposed challenge is mastering the piano through bi-manual dexterity, using a pair of simulated anthropomorphic robot hands. We call it RoboPianist, and the initial version covers a broad set of 150 variable-difficulty songs. We investigate both model-free and model-based methods on the benchmark, characterizing their performance envelopes. We observe that while certain existing methods, when well-tuned, can achieve impressive levels of performance in certain aspects, there is significant room for improvement. RoboPianist provides a rich quantitative benchmarking environment, with human-interpretable results, high ease of expansion by simply augmenting the repertoire with new songs, and opportunities for further research, including in multi-task learning, zero-shot generalization, multimodal (sound, vision, touch) learning, and imitation. Supplementary information, including videos of our control policies, can be found at https://kzakka.com/robopianist
    • …
    corecore