10 research outputs found
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
Double-Blind Phase III Randomized Trial of the Antiprogestin Agent Mifepristone in the Treatment of Unresectable Meningioma: SWOG S9005
PURPOSE: Progesterone receptors are expressed in approximately 70% of meningiomas. Mifepristone is an oral antiprogestational agent reported to have modest activity in a phase II study. This multicenter, prospective, randomized, placebo-controlled phase III trial conducted by SWOG was planned to define the role of mifepristone in the treatment of unresectable meningioma. PATIENTS AND METHODS: Eligible patients were randomly assigned to receive either mifepristone or placebo for 2 years unless disease progressed. Patients who were stable or responding to protocol therapy after 2 years had the option to continue with the same blinded therapy. Serial follow-up allowed assessment of efficacy and toxicity. Time to treatment failure and overall survival were ascertained for all randomly assigned patients. On progression, patients receiving placebo could cross over and receive active drug. RESULTS: Among 164 eligible patients, 80 were randomly assigned to mifepristone and 84 to placebo. Twenty-four patients (30%) were able to complete 2 years of mifepristone without disease progression, adverse effects, or other reasons for discontinuation. Twenty-eight patients (33%) in the placebo arm completed the 2-year study. There was no statistical difference between the arms in terms of failure-free or overall survival. CONCLUSION: Long-term administration of mifepristone was well tolerated but had no impact on patients with unresectable meningioma
The value of secondary pathology review
6 Background: Improving the value of cancer care is a major focus for the Alliance of Dedicated Cancer Centers (ADCC). Looking to align with the Institute of Medicine’s (IOM) initiative to “Develop and deploy approaches to identify, learn from, and reduce diagnostic errors and near misses in clinical practice,” the ADCC implemented a study to examine the clinical impact of expert secondary pathology review. The goal of this project was to: 1) demonstrate the value of secondary review of outside pathological specimens by ADCC subspecialty pathologists in identifying significant errors that can potentially impact treatment; and 2) create an opportunity to improve patient cancer care. Methods: All consult slides from patients referred to each ADCC center were reviewed by designated pathologists. Patient-level data for original and revised diagnoses were collected for two months in 2014. Discrepancies were classified as: 1) major - diagnosis changes treatment or surveillance; or, 2) minor - diagnosis does not change affect treatment or surveillance. To verify these assessments, disease-specific, multi-center teams of clinical experts reviewed each discrepant case and provided treatment recommendations for the original and revised diagnoses. Results: A total of 13,109 cases were collected across all ADCC centers and the discrepancy rate was 11% (1,488/1309); 3% (359/13,109) were major and 9% (1,129/13,109) were minor. The most common discrepancy was reclassification of the neoplasm cell type. The highest discrepancy rate was shown in the neuro-oncology and head and neck cases, with a 7% and 4% major discrepancy rate respectively. Conclusions: We identified an overall discrepancy rate of 11%, with 3% of cases leading to a change in treatment or surveillance. This demonstrates the importance of expert pathology review and that secondary pathology review can significantly improve clinical outcomes through precise and accurate pathological diagnoses. As indicated in the recent IOM report, this project further demonstrates that “diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions.
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity.Foundation for Food and Agriculture ResearchOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
An evaluation of carbon indicators of soil health in long-term agricultural experiments
Soil organic carbon (SOC) is closely tied to soil health. However, additional biological indicators may also provide insight about C dynamics and microbial activity. We used SOC and the other C indicators (potential C mineralization, permanganate oxidizable C, water extractable organic C, and β-glucosidase enzyme activity) from the North American Project to Evaluate Soil Health Measurements to examine the continental-scale drivers of these indicators, the relationships among indicators, and the effects of soil health practices on indicator values. All indicators had greater values at cooler temperatures, and most were greater with increased precipitation and clay content. The indicators were strongly correlated with each other at the site-level, with the strongest relationship between SOC and permanganate oxidizable C. The indicator values responded positively to decreased tillage, inclusion of cover crops, application of organic nutrients, and retention of crop residue, but not the number of harvested crops in a rotation. The effect of decreased tillage on the C indicators was generally greater at sites with higher precipitation. The magnitude and direction of the response to soil health practices was consistent across indicators within a site but measuring at least two indicators would provide additional confidence of the effects of management, especially for tillage. All C indicators responded to management, an essential criterion for evaluating soil health. Balancing the cost, sensitivity, interpretability, and availability at commercial labs, a 24-hr potential C mineralization assay could deliver the most benefit to measure in conjunction with SOC.Samuel Roberts Noble FoundationOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Evaluation of aggregate stability methods for soil health
Aggregate stability is a commonly used indicator of soil health because improvements in aggregate stability are related to reduced erodibility and improved soil–water dynamics. During the past 80 to 90 years, numerous methods have been developed to assess aggregate stability. Limited comparisons among the methods have resulted in varied magnitudes of response to soil health management practices and varied influences of inherent soil properties and climate. It is not clear whether selection of a specific method creates any advantage to the investigator. This study assessed four commonly used methods of measuring aggregate stability using data collected as part of the North American Project to Evaluate Soil Health Measurements. The methods included water stable aggregates using the Cornell Rainfall Simulator (WSACASH), wet sieved water stable aggregates (WSAARS), slaking captured and adapted from SLAKES smart-phone image recognition software (STAB10), and the mean weight diameter of water stable aggregates (MWD). Influence of climate and inherent soil properties at the continental scale were analyzed in addition to method responses to rotation diversity, cash crop count, residue management, organic nutrient amendments, cover crops, and tillage. The four methods were moderately correlated with each other. All methods were sensitive to differences in climate and inherent soil properties between sites, although to different degrees. None measured significant effects from rotation diversity or crop count, but all methods detected significant increases in aggregate stability resulting from reduced tillage. Significant increases or positive trends were observed for all methods in relation to cover cropping, increased residue retention, and organic amendments, except for STAB10, which expressed a slightly negative response to organic amendments. Considering these results, no single method was clearly superior and all four are viable options for measuring aggregate stability. Therefore, secondary considerations (e.g., cost, method availability, increased sensitivity to a specific management practice, or minimal within-treatment variability) driven by the needs of the investigator, should determine the most suitable method.General Mills IncOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]