15 research outputs found

    Microstructure and Properties of Casting Magnesium Alloys Designed to Work in Elevated Temperature

    Get PDF
    Magnesium alloys are widely used in aerospace and automotive industry due to their low density, good mechanical properties, and good castability. Their main disadvantage is low maximum working temperature (about 120°C for Mg-Al alloys). This led to the development of Mg-Al-RE or Mg-RE-Zr alloys, which can work up to 250°C. The chapter will relate to the sand cast and high pressure die cast magnesium alloys. Material for the research consisted of six magnesium casting alloys: AE44, AJ62, WE54, EV31A, and for comparison AZ91 and AM50. The influence of casting and heat treatment parameters on the microstructure and mechanical properties will be introduced. The relationship between the initial structure, casting parameters, phase composition, and mechanical properties in magnesium alloys will be presented

    Structural and quantitative analysis of die cast AE44 magnesium alloy

    Get PDF
    Purpose: The main objective of this study was development of determination of phase fraction methodology in cast magnesium alloy containing aluminum and rare earth elements. Design/methodology/approach: The study was conducted on magnesium alloy containing 4 %wt. aluminum and 4 %wt. mixture of rare earth elements (mischmetal) in the as-cast condition. The mischmetal includes cerium, lanthanum, neodymium and praseodymium. In this study, several methods were used such as: optical light microscopy, quantitative metallography, scanning electron microscopy and X-ray diffraction. The Rietveld method with Hill and Howard procedure was applied for determination of lattice parameters and phase abundance. Findings: The microstructure of investigated alloy consists of α-Mg solid solution, globular, lamellar and acicular precipitations of Al11RE3 and Al2RE phases. The results show that the accurate determination of phase contents in AE44 alloy can not perform using quantitative metallography. In this purpose X-ray investigations should be applied. Research limitations/implications: Developed methodology will be used to quantitative phase analysis of investigated alloy after creep tests and die cast with different parameters. Practical implications: AE44 magnesium alloy is used in automotive industry. Moreover, this alloy has a new potential application and results of investigations may be useful for preparing optimal technology of die casting. Originality/value: Procedure described in this paper may be useful as the best experimental techniques for quantitative phase analysis of the intermetallic phases occurring in the AE series magnesium alloys

    REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering

    Get PDF
    Mutagenesis is an important tool to study gene regulation, model disease-causing mutations and for functional characterisation of proteins. Most of the current methods for mutagenesis involve multiple step procedures. One of the most accurate methods for genetically altering DNA is recombineering, which uses bacteria expressing viral recombination proteins. Recently, the use of in vitro seamless assembly systems using purified enzymes for multiple-fragment cloning as well as mutagenesis is gaining ground. Although these in vitro isothermal reactions are useful when cloning multiple fragments, for site-directed mutagenesis it is unnecessary. Moreover, the use of purified enzymes in vitro is not only expensive but also more inaccurate than the high-fidelity recombination inside bacteria. Here we present a single-step method, named REPLACR-mutagenesis (Recombineering of Ends of linearised PLAsmids after PCR), for creating mutations (deletions, substitutions and additions) in plasmids by in vivo recombineering. REPLACR-mutagenesis only involves transformation of PCR products in bacteria expressing Red/ET recombineering proteins. Modifications in a variety of plasmids up to bacterial artificial chromosomes (BACs; 144 kb deletion) have been achieved by this method. The presented method is more robust, involves fewer steps and is cost-efficient.</p

    Effect of Modification on Microstructure and Properties of AZ91 Magnesium Alloy

    No full text
    Refinement of &alpha;-Mg solid solution grains has a significant influence on the improvement of mechanical properties of cast magnesium alloys. In the article, the effects of three modifiers on microstructure and properties of AZ91 magnesium alloy casted to a sand mould were described. Overheating, hexachloroethane and wax-CaF2-carbon powder were applied. The research procedure comprised microstructure analysis by means of light microscopy, scanning electron microscopy and quantitative analysis with AnalySIS Pro&reg; software and mechanical properties&rsquo; investigation. The microstructure of AZ91 alloy in the as-cast condition consists of &alpha;-Mg solid solution with precipitates of Mg17Al12, Mg2Si and Al8Mn5 phases. It was reported that all applied modifiers cause refinement of &alpha;-Mg solid solution grains and a decrease of the volume fraction of &alpha;-Mg+Mg17Al12 compound discontinuous precipitates. The best results were obtained in the case of wax-CaF2-carbon powder

    Gating System Optimization for EV31A Magnesium Alloy Engine Body Sand Casting

    No full text
    The research presented in this paper aimed to change the existing gating system that would enable the engine body casting, from a new EV31A magnesium alloy, of the required quality. For this reason, the casting process simulations used the MAGMASoft software, followed by the experimental validation of the achieved results. The results achieved in the first stage of the cast computer simulation enabled the identification of potential problems and factors that reduce the casting quality. However, the proposed design modifications eliminated the inadequate delivery of liquid metal to the casting&rsquo;s critical areas by adequately controlling the mold cavity filling and solidification process. The experiment validated the simulations of the computer casting defects at the various stages. The results enabled the new EV31A magnesium alloy to be implemented in industrial production

    Comprehensive Review on Betulin as a Potent Anticancer Agent

    No full text
    Numerous plant-derived substances, and their derivatives, are effective antitumour and chemopreventive agents. Yet, there are also a plethora of tumour types that do not respond, or become resistant, to these natural substances. This requires the discovery of new active compounds. Betulin (BE) is a pentacyclic triterpene and secondary metabolite of plants abundantly found in the outer bark of the birch tree Betulaceae sp. BE displays a broad spectrum of biological and pharmacological properties, among which the anticancer and chemopreventive activity attract most of the attention. In this vein, BE and its natural and synthetic derivatives act specifically on cancer cells with low cytotoxicity towards normal cells. Although the antineoplastic mechanism of action of BE is not well understood yet, several interesting aspects of BE’s interactions are coming to light. This review will summarize the anticancer and chemopreventive potential of BE in vitro and in vivo by carefully dissecting and comparing the doses and tumour lines used in previous studies, as well as focusing on mechanisms underlying its activity at cellular and molecular level, and discuss future prospects

    Genetically Engineered Lung Cancer Cells for Analyzing Epithelial–Mesenchymal Transition

    No full text
    Cell plasticity, defined as the ability to undergo phenotypical transformation in a reversible manner, is a physiological process that also exerts important roles in disease progression. Two forms of cellular plasticity are epithelial&ndash;mesenchymal transition (EMT) and its inverse process, mesenchymal&ndash;epithelial transition (MET). These processes have been correlated to the poor outcome of different types of neoplasias as well as drug resistance development. Since EMT/MET are transitional processes, we generated and validated a reporter cell line. Specifically, a far-red fluorescent protein was knocked-in in-frame with the mesenchymal gene marker VIMENTIN (VIM) in H2170 lung cancer cells. The vimentin reporter cells (VRCs) are a reliable model for studying EMT and MET showing cellular plasticity upon a series of stimulations. These cells are a robust platform to dissect the molecular mechanisms of these processes, and for drug discovery in vitro and in vivo in the future
    corecore