114 research outputs found

    DNA microarray studies on breast cancer

    Get PDF
    Badania molekularne nowotworów zazwyczaj opierały się na poszukiwaniu zmian w pojedynczych genach lub ich niewielkich grupach i pozwoliły na znaczny postęp wiedzy dotyczącej biologii nowotworów. Jednak — poza nielicznymi wyjątkami — nie przyniosły przełomowych wyników, mogących stanowić istotne zastosowania rokownicze lub predykcyjne. Wynika to z faktu, że nowotwór zazwyczaj nie jest następstwem uszkodzenia funkcji pojedynczego genu, lecz ich całych zespołów, kontrolujących liczne szlaki metaboliczne i regulacyjne w komórce. Obecnie dzięki technologii mikromacierzy cDNA jest możliwe jednoczesne badanie funkcji dużej liczby genów w pojedynczych próbkach tkankowych. Raki piersi, nawet jeśli są w tym samym stanie zaawansowania klinicznego i mają podobne utkanie histologiczne — mogą znacznie różnić się przebiegiem klinicznym. Z kolei wiadomo, że chemioterapia stosowana na podstawie klasycznych czynników rokowniczych, nie wpływa na przeżycie tylko 70–80% chorych, które ją otrzymały. Kwalifikacja jest zatem mało precyzyjna, a leczenie zbyt słabo zróżnicowane. Ostatnio wprowadzona technologia mikromacierzy cDNA pozwoliła na stworzenie molekularnych profili raka piersi, różniących się również biologicznie. Należy oczekiwać, że badania te dostarczą istotnych narzędzi przydatnych w codziennej praktyce klinicznej.Molecular studies based on the analysys of a alterations in single or in a few genes did not produce results, which may be used as an important individual prognostic factor. It shows, that as cancer is not a result of a single gene alteration, we need to study a multiple gene alterations, and not only on the structural level but also analyzing its expression. As so many genes are involved in different cellular controlling mechanisms, the only way to make tumor profiling and looking for its biological significance is concerted analysis of thousands genes simultaneously. Such a gene expression profiling on a big scale is now possible with cDNA microarray technology. Patients with breast cancer with the same histology and the same clinical stage often present different clinical outcome. Adjuvant therapy is ordered mostly on the basis of these standard prognostic factors, but 70–80% of patient receiving this therapy, would have survived without it. The recent development of gene expression microarray provides an opportunity to prepare more detailed profiling of tumors, alowing to treat only those patients who are most likely to have a benefit from this

    WWOX Tumor Suppressor Gene in Breast Cancer, a Historical Perspective and Future Directions

    Get PDF
    The WWOX tumor suppressor gene is located at 16q23. 1–23.2, which covers the region of FRA16D—a common fragile sites. Deletions within the WWOX coding sequence are observed in up to 80% of breast cancer cases, which makes it one of the most common genetic alterations in this tumor type. The WWOX gene is known to play a role in breast cancer: increased expression of WWOX inhibits cell proliferation in suspension, reduces tumor growth rates in xenographic transplants, but also enhances cell migration through the basal membrane and contributes to morphological changes in 3D matrix-based cell cultures. The WWOX protein may act in several ways, as it has three functional domains—two WW domains, responsible for protein-protein interactions and an SDR domain (short dehydrogenase/reductase domain) which catalyzes conversions of low molecular weight ligands, most likely steroids. In epithelial cells, WWOX modulates gene transcription through interaction with p73, AP-2γ, and ERBB4 proteins. In steroid hormone-regulated tissues like mammary gland epithelium, the WWOX SDR domain acts as a steroid dehydrogenase. The relationship between WWOX and hormone receptors was shown in an animal model, where WWOX(C3H)+/–mice exhibited loss of both ER and PR receptors. Moreover, in breast cancer specimens, a positive correlation was observed between WWOX expression and ER status. On the other hand, decreased WWOX expression was associated with worse prognosis, namely higher relapse and mortality rates in BC patients. Recently, it was shown that genomic instability might be driven by the loss of WWOX expression. It was reported that WWOX plays role in DNA damage response (DDR) and DNA repair by regulating ATM activation through physical interaction. A genome caretaker function has also been proposed for WWOX, as it was found that WWOX sufficiency decreases homology directed repair (HDR) and supports non-homologous end-joining (NHEJ) repair as the dominant DSB repair pathway by Brca1-Wwox interaction. In breast cancer cells, WWOX was also found to modulate the expression of glycolysis pathway genes, through hypoxia-inducible transcription factor 1α (HIF1α) regulation. The paper presents the current state of knowledge regarding the WWOX tumor suppressor gene in breast cancer, as well as future research perspectives

    Variable expression of cysteinyl leukotriene type I receptor splice variants in asthmatic females with different promoter haplotypes

    Get PDF
    BACKGROUND: Cysteinyl leukotrienes are potent inflammatory mediators implicated in the pathogenesis of asthma. Human cysteinyl leukotriene receptor 1 (CYSLTR1) gene contains five exons that are variably spliced. Within its promoter few polymorphisms were described. To date, there has been no evidence about the expression of different splice variants of CysLT(1 )in asthma and their association with CYSLTR1 promoter polymorphisms. The goal of our study was to investigate CysLT(1 )alternative transcripts expression in asthmatic patients with different CYSLTR1 promoter haplotypes. The study groups consisted of 44 patients with asthma, diagnosed according to GINA 2008 criteria and 18 healthy subjects. Genomic DNA and total RNA was extracted from peripheral blood mononuclear cells. Real-time PCR was performed with specific primers for transcript I [GenBank:DQ131799] and II [GenBank:DQ131800]. Fragments of the CYSLTR1 promoter were amplified by PCR and sequenced directly to identify four single nucleotide polymorphisms: C/T [SNP:rs321029], A/C [SNP:rs2637204], A/G [SNP:rs2806489] and C/T [SNP:rs7066737]. RESULTS: The expression of CysLT(1 )transcript I and II in asthma did not differ from its expression in healthy control group. However, in major alleles homozygotic CAAC/CAAC women with asthma we found significantly higher expression of transcript I as compared to heterozygous CAAC/TCGC women in that loci. CysLT(1 )transcript I expression tended to negative correlation with episodes of acute respiratory infection in our asthmatic population. Moreover, expression of CysLT(1 )transcript II in CAAC/CAAC homozygotic women with asthma was significantly lower than in CAAC/CAAC healthy control females. CONCLUSIONS: Genetic variants of CYSLTR1 promoter might be associated with gender specific expression of CysLT(1 )alternative transcripts in patients with asthma. CysLT(1 )splice variants expression might also correlate with the susceptibility to infection in asthmatic population

    WWOX expression in colorectal cancer—a real-time quantitative RT-PCR study

    Get PDF
    The WWOX gene is a tumour suppressor gene affected in various types of malignancies. Numerous studies showed either loss or reduction of the WWOX expression in variety of tumours, including breast, ovary, liver, stomach and pancreas. Recent study demonstrated that breast cancer patients exhibiting higher WWOX expression showed significantly longer disease-free survival in contrast to the group with lower relative WWOX level. This work was undertaken to show whether similar phenomena take place in colon tumours and cell lines. To assess the correlation of WWOX gene expression with prognosis and cancer recurrence in 99 colorectal cancer patients, we performed qRT-PCR analysis. We also performed analysis of WWOX promoter methylation status using MethylScreen method and analysis of loss of heterozygosity (LOH) status at two WWOX-related loci, previously shown to be frequently deleted in various types of tumours. A significantly better disease-free survival was observed among patients with tumours exhibiting high level of WWOX (hazard ratio = 0.39; p = 0.0452; Mantel–Cox log-rank test), but in multivariate analysis it was not an independent prognostic factor. We also found that although in colorectal cancer WWOX expression varies among patients and correlates with DFS, the exact mode of decrease in this type of tumour was not found. We failed to find the evidence of LOH in WWOX region, or hypermethylation in promoter regions of this gene. Although we provide the evidence for tumour-suppressive role of WWOX gene expression in colon, we were unable to identify the molecular mechanism responsible for this

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the ηϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure

    Molecular analysis of WWOX expression correlation with proliferation and apoptosis in glioblastoma multiforme

    Get PDF
    Glioblastoma multiforme is the most common type of primary brain tumor in adults. WWOX is a tumor suppressor gene involved in carcinogenesis and cancer progression in many different neoplasms. Reduced WWOX expression is associated with more aggressive phenotype and poor patient outcome in several cancers. We investigated alternations of WWOX expression and its correlation with proliferation, apoptosis and signal trafficking in 67 glioblastoma multiforme specimens. Moreover, we examined the level of WWOX LOH and methylation status in WWOX promoter region. Our results suggest that loss of heterozygosity (relatively frequent in glioblastoma multiforme) along with promoter methylation may decrease the expression of this tumor suppressor gene. Our experiment revealed positive correlations between WWOX and Bcl2 and between WWOX and Ki67. We also confirmed that WWOX is positively correlated with ErbB4 signaling pathway in glioblastoma multiforme

    Does vimentin help to delineate the so-called 'basal type breast cancer'?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vimentin is one of the cytoplasmic intermediate filament proteins which are the major component of the cytoskeleton. In our study we checked the usefulness of vimentin expression in identifying cases of breast cancer with poorer prognosis, by adding vimentin to the immunopanel consisting of basal type cytokeratins, estrogen, progesterone, and HER2 receptors.</p> <p>Methods</p> <p>179 tissue specimens of invasive operable ductal breast cancer were assessed by the use of immunohistochemistry. The median follow-up period for censored cases was 90 months.</p> <p>Results</p> <p>38 cases (21.2%) were identified as being vimentin-positive. Vimentin-positive tumours affected younger women (p = 0.024), usually lacked estrogen and progesterone receptor (p < 0.001), more often expressed basal cytokeratins (<0.001), and were high-grade cancers (p < 0.001). Survival analysis showed that vimentin did not help to delineate basal type phenotype in a triple negative (ER, PgR, HER2-negative) group. For patients with 'vimentin or CK5/6, 14, 17-positive' tumours, 5-year estimated survival rate was 78.6%, whereas for patients with 'vimentin, or CK5/6, 14, 17-negative' tumours it was 58.3% (log-rank p = 0.227).</p> <p>Conclusion</p> <p>We were not able to better delineate an immunohistochemical definition of basal type of breast cancer by adding vimentin to the immunopanel consisted of ER, PgR, HER2, CK5/6, 14 and 17 markers, when overall survival was a primary end-point.</p
    corecore