8 research outputs found

    ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCE

    Full text link
    In-cylinder thermal barrier materials have been thoroughly investigated for their potential improvements in thermal efficiency in reciprocating internal combustion engines. These materials show improvements both directly in indicated work and indirectly through reduced demand on the cooling system. Many experimental and analytical sources have shown reductions in heat losses to the combustion chamber walls, but converting the additional thermal energy to indicated work has proven more difficult. Gains in indicated work over the expansion stroke could be made, but these were negated by increased compression work and reduced volumetric efficiency due to charge heating. Typically, the only improvements in brake work would come from the pumping loop in turbocharged engines, or from additional exhaust energy extraction through turbine-compounding devices. The concept of inter-cycle wall-temperature-swing holds promise to reap the benefits of insulation during combustion and expansion, while not suffering the penalties incurred with hotter walls during intake and compression. The combination of low volumetric heat capacity and low thermal conductivity would allow the combustion chamber surface temperature to quickly respond to the gas temperature throughout combustion. Surface temperatures are capable of rising in response to the spike in heat flux, thereby minimizing the temperature difference between the gas and wall early in the expansion stroke when the greatest conversion of thermal energy to mechanical work is possible. The combination of low heat capacity and thermal conductivity is essential in allowing this temperature increase during combustion, and in enabling the surface to cool during expansion and exhaust to avoid harmfully affecting engine volumetric efficiency during the intake stroke and minimizing compression work performed on the next stroke. In this thesis, thermal and thermodynamic models are constructed in an attempt to predict the effects of material properties in the walls, and to characterize the effects of heat transfer at different portions of the cycle on indicated work, volumetric efficiency, exhaust energy and gas temperatures of a reciprocating internal combustion engine. The expected impact on combustion knock in spark-ignited engines was also considered, as this combustion mode was the basis for the experimental engine testing performed. Conventional insulating materials were evaluated to benchmark the current state-of-the-art, and to gain experience in the analysis of materials with temperature-swing capability. Unfortunately, the effects of permeable porosity within the conventional coating on heat losses, fuel absorption and compression ratio tended to mask the effects of temperature swing. The individual impact of each of these loss mechanisms on engine performance was analyzed, and the experience helped to further refine the necessary traits of a successful temperature-swing material Finally, from the learnings of this analysis phase, a novel material was created and applied to the piston surface, intake valve faces, and exhaust valve faces. Engine data was taken with these coated components and compared to an un-coated baseline. While some of the test pieces physically survived the testing, analysis of the data suggests that they were not fully sealed and suffered from the same permeability losses that affected the conventional insulation. Further development is necessary to arrive at a robust, effective solution for minimizing heat transfer through wall temperature swing in reciprocating internal combustion engines. The success of temperature-swing thermal barrier materials requires very low thermal conductivity, heat capacity, and appropriate insulation thickness, as well as resilient sealing of any porous volume within the coating to avoid additional heat and fuel energy losses throughout the cycle.Los materiales aislantes han sido investigados a fondo por sus posibles mejoras en la eficiencia t茅rmica de los motores de combusti贸n interna alternativos. Estas mejoras se ven reflejadas tanto directamente en el trabajo indicado como indirectamente a trav茅s de la reducci贸n del sistema de refrigeraci贸n del propio motor. Diferentes estudios, tanto experimentales como anal铆ticos, han mostrado la reducci贸n en la transferencia de calor a trav茅s de las paredes de la c谩mara de combusti贸n mediante la utilizaci贸n de estos materiales. Sin embargo, demostrar la conversi贸n de la energ铆a t茅rmica adicional en trabajo indicado ha resultado m谩s dif铆cil. En ciertos estudios se pudieron obtener mejoras en el trabajo indicado durante la carrera de expansi贸n, pero 茅stas fueron reducidas debido a un menor rendimiento volum茅trico debido al calentamiento de la carga durante el proceso de admisi贸n y un mayor trabajo en la carrera de compresi贸n. T铆picamente, las 煤nicas mejoras en el trabajo al freno provendr铆an de la reducci贸n de p茅rdidas por bombeo en los motores turboalimentados, o de la extracci贸n de la energ铆a adicional de los gases de escape a trav茅s de turbinas. El concepto de los materiales con oscilaci贸n de la temperatura durante el ciclo motor intenta aprovechar los beneficios del aislamiento durante los procesos de combusti贸n y expansi贸n, mitigando las perdidas por el incremento de la temperatura de las paredes durante la admisi贸n y la compresi贸n. La combinaci贸n de baja capacidad calor铆fica y baja conductividad t茅rmica permitir铆a que la temperatura de la superficie de la c谩mara de combusti贸n respondiera r谩pidamente a la temperatura del gas durante el proceso de combusti贸n. Las temperaturas de la superficie son capaces de aumentar en respuesta al pico de flujo de calor, minimizando as铆 la diferencia de temperatura entre el gas y la pared en la carrera de expansi贸n cuando es posible la mayor conversi贸n de energ铆a t茅rmica en trabajo mec谩nico. La combinaci贸n de baja capacidad calor铆fica y conductividad t茅rmica es tambi茅n esencial para permitir este aumento de temperatura durante la combusti贸n y para permitir que la superficie se enfr铆e durante la expansi贸n y el escape para no perjudicar as铆 el rendimiento volum茅trico del motor durante la carrera de admisi贸n y minimizar el trabajo de compresi贸n realizado en el siguiente ciclo. En esta tesis se han desarrollado modelos t茅rmicos y termodin谩micos para predecir los efectos de las propiedades de los materiales en las paredes y caracterizar los efectos de la transferencia de calor en diferentes partes del ciclo sobre el trabajo indicado, el rendimiento volum茅trico, la energ铆a en los gases de escape y las temperaturas del gas para un motor de combusti贸n interna alternativo. Tambi茅n se ha evaluado el impacto del uso de estos materiales en el knock en motores de combusti贸n de encendido provocado, ya que los estudios experimentales de esta tesis se realizaron en un motor de estas caracter铆sticas. Durante la investigaci贸n se evaluaron materiales aislantes convencionales para comprender el estado actual de esta t茅cnica y para adquirir tambi茅n experiencia en el an谩lisis de materiales aislantes con oscilaci贸n de temperatura. Desafortunadamente, los efectos de la permeabilidad a trav茅s de la porosidad del material en los recubrimientos convencionales, la absorci贸n de combustible y la relaci贸n de compresi贸n tendieron a ocultar los efectos de la oscilaci贸n de la temperatura y la reducci贸n de la transferencia de calor a trav茅s de las paredes. As铆 pues, se analiz贸 el impacto individual de cada uno de estos mecanismos y su influencia en el rendimiento del motor para as铆 definir un nuevo material con las caracter铆sticas necesarias que mejorasen el aislante con de oscilaci贸n de temperatura. Finalmente, a partir de los estudios de esta fase de an谩lisis, se cre贸 un nuevo material y se aplic贸 a la superficie del pist贸n y a la supeEls materials a茂llants han estat investigats a fons per les seves possibles millores en l'efici猫ncia t猫rmica en el motors de combusti贸 interna alternatius. Aquestes millores es veuen reflectides tant directament en el treball indicat com indirectament a trav茅s de la reducci贸 del sistema de refrigeraci贸 del propi motor. Diferents estudis, tant experimentals com anal铆tics, han mostrat la reducci贸 en la transfer猫ncia de calor a trav茅s de les parets de la cambra de combusti贸 mitjan莽ant la utilitzaci贸 d'aquests materials. No obstant aix貌, demostrar la conversi贸 de l'energia t猫rmica addicional en treball indicat ha resultat m茅s dif铆cil. En certs estudis es van poder obtenir millores en el treball indicat durant la carrera d'expansi贸, per貌 aquestes van ser redu茂des a causa d'un menor rendiment volum猫tric causat de l'escalfament de la c脿rrega durant el proc茅s d'admissi贸 i un major treball en la carrera de compressi贸. T铆picament, les 煤niques millores en el treball al fre provindrien de la reducci贸 de p猫rdues per bombeig en els motors turbo alimentats, o de l'extracci贸 addicional de l'energia dels gasos d'escapament a trav茅s de turbines. El concepte dels materials amb oscil路laci贸 de la temperatura durant el cicle motor intenta aprofitar els beneficis de l'a茂llament durant els processos de combusti贸 i expansi贸, mitigant les perdudes per l'increment de la temperatura de les parets durant l'admissi贸 i la compressi贸. La combinaci贸 de baixa capacitat calor铆fica i baixa conductivitat t猫rmica permetria que la temperatura de la superf铆cie de la cambra de combusti贸 respongu茅s r脿pidament a la temperatura del gas durant el proc茅s de combusti贸. Les temperatures de la superf铆cie s贸n capa莽os d'augmentar en resposta al flux de calor, minimitzant aix铆 la difer猫ncia de temperatura entre el gas i la paret en la carrera d'expansi贸 quan 茅s possible la major conversi贸 d'energia t猫rmica en treball mec脿nic. La combinaci贸 de baixa capacitat calor铆fica i conductivitat t猫rmica 茅s tamb茅 essencial per permetre aquest augment de temperatura durant la combusti贸 i el refredament de la superf铆cie durant l'expansi贸 i l'escapament per no perjudicar aix铆 el rendiment volum猫tric del motor durant la carrera d'admissi贸 i minimitzar el treball de compressi贸 realitzat en el seg眉ent cicle. En aquesta tesi s'han desenvolupat models t猫rmics i termodin脿mics per predir els efectes de les propietats dels materials en les parets i caracteritzar els efectes de la transfer猫ncia de calor en diferents parts del cicle sobre el treball indicat, el rendiment volum猫tric, l'energia en els gasos d'escapament i les temperatures del gas per un motor de combusti贸 interna alternatiu. Tamb茅 s'ha avaluat l'impacte d'aquests materials en el knock en motors de combusti贸 d'encesa provocada, ja que les proves experimentals d'aquesta tesi es van realitzar en un motor d'aquestes caracter铆stiques. Durant la investigaci贸 es van avaluar materials a茂llants convencionals per comprendre l'estat actual d'aquesta t猫cnica i per adquirir tamb茅 experi猫ncia en l'an脿lisi de materials a茂llants amb oscil路laci贸 de temperatura. Desafortunadament, els efectes de la permeabilitat a trav茅s de la porositat del material en el recobriment convencional, l'absorci贸 de combustible i la relaci贸 de compressi贸 van tendir a ocultar els efectes de l'oscil路laci贸 de la temperatura i la reducci贸 de la transfer猫ncia de calor a trav茅s de les parets. Aix铆 doncs, es va analitzar l'impacte individual de cada un d'aquests mecanismes i la seva influ猫ncia en el rendiment del motor per aix铆 definir un nou material amb les caracter铆stiques necess脿ries que milloressin el a茂llant d'oscil路laci贸 de temperatura. Finalment, a partir dels estudis d'aquesta fase d'an脿lisi, es va crear un nou material i es va aplicar a la superf铆cie del pist贸 i a la superf铆cie interna de les v脿lvules d'admissi贸 i d'escapament. Les dades de motor es van prendre aAndruskiewicz, PP. (2017). ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCE [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/90467TESI

    Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits

    Full text link
    [EN] Materials that enable wall temperature swing to follow the gas temperature throughout a reciprocating internal combustion engine cycle promise the greatest benefits from in-cylinder insulation without detriments to volumetric efficiency or fuel autoignition behavior. An anisotropic barium-neodymium-titanate insulation was selected as a promising off-the-shelf material to begin investigating temperature swing characteristics while maintaining adequate strength and adherence to the aluminum components it was applied to. Experimental analysis showed that permeable porosity within the barium-neodymium-titanate coating resulted in increased heat losses despite thermal insulation, fuel absorption losses, and a reduction in compression ratio. Additionally, the thickest coating suffered severe degradation throughout testing. Any potential benefits of temperature swing insulation were dominated by these losses, emphasizing the need to maintain a sealed coating surface.Andruskiewicz, P.; Najt, P.; Durrett, R.; Payri, R. (2018). Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research. 19(6):599-612. https://doi.org/10.1177/1468087417729254S59961219

    Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes

    Full text link
    [EN] A thermal wall temperature swing model was built to capture the transient effects of various material properties and coating layers on the intra-cycle wall temperature of an internal combustion engine. This model was used with a thermodynamic engine simulation to predict and analyze the effects of different types of in-cylinder insulation on engine performance. Coatings that allow the surface temperature to swing in response to the gas' cyclical heat flux enable approximately 1/3 of the energy that was prevented from leaving the gas during expansion to be recovered while improving volumetric efficiency. Reductions in compression work due to better volumetric efficiency and less heat transfer from the walls to the gas accounted for half of the improvements, while additional work extraction during combustion and expansion accounted for the other half. As load increases, the temperature swing and benefits derived from it also increase. NSFC improvements of 0.5% to 1% were seen with a highly swinging coating in the throttled regime for a realistic engine geometry and coating area, up to 2.5% at high loadsAndruskiewicz, P.; Najt, P.; Durrett, R.; Biesboer, S.; Schaedler, T.; Payri, R. (2018). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research. 19(4):461-473. https://doi.org/10.1177/1468087417717903S461473194Ramesh Kumar, C., & Nagarajan, G. (2012). Performance and emission characteristics of a low heat rejection spark ignited engine fuelled with E20. Journal of Mechanical Science and Technology, 26(4), 1241-1250. doi:10.1007/s12206-012-0206-0Hoffman, M. A., Lawler, B. J., G眉ralp, O. A., Najt, P. M., & Filipi, Z. S. (2014). The impact of a magnesium zirconate thermal barrier coating on homogeneous charge compression ignition operational variability and the formation of combustion chamber deposits. International Journal of Engine Research, 16(8), 968-981. doi:10.1177/146808741456127

    Piston-dual compression, dual expansion (DCDE) engine modeling for improved efficiency and performance

    Full text link
    [EN] A dual-compression, dual expansion (DCDE) engine concept utilizing thermal insulation, piston compressors and expanders is presented and analyzed to determine the potential for improved efficiency and performance. The engine design takes advantage of the ability to separate and optimize the different processes occurring in the cycle, and to recapture energy that otherwise would have been lost. Gains of approximately 10% over the baseline modern turbodiesel engine were realized at mid to high loads due to more efficient pumping, expansion, and heat transfer improvements. At low loads, the increased friction of the piston DCDE concept hurt the efficiency in comparison to the baseline[ES] Un concepto de motor de doble compresi贸n, expansi贸n dual (DCDE) la utilizaci贸n de aislamiento t茅rmico, compresores de pist贸n y expansores se presenta y se analiz贸 para determinar el potencial de mejora de la eficiencia y el rendimiento. El dise帽o del motor se aprovecha de la capacidad de separar y optimizar los diferentes procesos que ocurren en el ciclo, y para recuperar energ铆a que de otro modo se habr铆a perdido. Ganancias de aproximadamente 10% sobre el motor turbodiesel moderno de l铆nea de base se realizaron a mediados de a las altas cargas debido al bombeo m谩s eficiente, ampliaci贸n y mejoras de transferencia de calor. A cargas bajas, el aumento de la fricci贸n del concepto DCDE pist贸n da帽o a la eficiencia en comparaci贸n con la l铆nea de base[Andruskiewicz, PP. (2013). Piston-dual compression, dual expansion (DCDE) engine modeling for improved efficiency and performance. http://hdl.handle.net/10251/47605Archivo delegad
    corecore