4 research outputs found

    АнодированиС алюминия Π² вязком элСктролитС для формирования ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… кристаллов

    Get PDF
    In the paper, the possibility to produce anodic aluminum oxide (AAO) featuring one-dimensional photonic crystal along the normal to the surface is shown. The AAO structure is represented by alternating layers of different porosity and is formed in a viscous electrolyte based on sulfuric acid and ethylene glycol at the periodically varying from high (1.8 mA/cm2) to low (0.4 mA/cm2) current density with a rectangular pulse shape. The pore sizes and interpore distance, pore density and porosity, thickness and period of the AAO structure have been determined. The specular reflection spectra features for single layers that make up the AAO structure and for one-dimensional photonic crystals structures consisting ofΒ 165 periods have been studied. An increase in the porosity of the upper layers of the structure due to chemical etching of the pores during the oxide growth is noted. It is shown that the invariance of the spectral position of the photonic band gap for AAO structures is achieved by a 0.1 % decrease in charge at each subsequent anodizing cycle during their formation, which leads to a decrease in the period of the structure in the lower layers, compensating for the increase in the upper layers porosity. The reflection spectra have been analyzed for the incidence angles of 10Β° and 30Β° and used to calculate the period of the structure and the effective refractive index. The effective refractive index of the single layers that make up the AAO structure is calculated using the optical Fabry–Perot oscillations. For AAO with the properties of one-dimensional photonic crystal, a green color is observed at normal light incidence, and an iridescent color is observed when the angle changes. AAO can be used as a decorative coating on the housings of electronic devices (tablets, laptops, phones, etc.) and when creating design objects made of aluminum and its alloys.Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ формирования Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ оксида алюминия (АОА) со свойствами ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ кристалла вдоль Π½ΠΎΡ€ΠΌΠ°Π»ΠΈ ΠΊ повСрхности. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° АОА прСдставлСна Ρ‡Π΅Ρ€Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈΡΡ слоями Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ пористости ΠΈ сформирована Π² вязком элСктролитС Π½Π° основС сСрной кислоты ΠΈ этилСнгликоля ΠΏΡ€ΠΈ пСриодичСски ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ плотности Ρ‚ΠΎΠΊΠ° с 1,8 Π½Π° 0,4 мА/см2 с ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠΎΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΏΠΎΡ€ ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ€ ΠΈ ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ структуры АОА. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ особСнности спСктров Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ отраТСния ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… структуру АОА слоСв ΠΈ структур ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… кристаллов, сформированных ΠΈΠ· 165 ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ², ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… соотвСтствовал росту оксида ΠΏΡ€ΠΈ плотностях Ρ‚ΠΎΠΊΠ° 1,8 ΠΈ 0,4 мА/см2. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ пористости Π²Π΅Ρ€Ρ…Π½ΠΈΡ… слоСв структуры вслСдствиС химичСского травлСния ΠΏΠΎΡ€ Π² процСссС роста оксида. Показано, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠΉ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ для структур АОА достигаСтся ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ заряда Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Ρ†ΠΈΠΊΠ»Π΅ анодирования Π½Π° 0,1 % ΠΏΡ€ΠΈ ΠΈΡ… Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° структуры Π² Π½ΠΈΠΆΠ½ΠΈΡ… слоях, компСнсируя рост пористости Π² Π²Π΅Ρ€Ρ…Π½ΠΈΡ… слоях. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Ρ‹ отраТСния ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ для ΡƒΠ³Π»ΠΎΠ² падСния 10Β° ΠΈ 30Β° ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для расчСта ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° структуры ΠΈ эффСктивного показатСля прСломлСния. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ прСломлСния ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… структуру АОА слоСв рассчитан с использованиСм оптичСских осцилляций Π€Π°Π±Ρ€ΠΈβ€“ΠŸΠ΅Ρ€ΠΎ. Для АОА со свойствами ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎΠ³ΠΎ кристалла ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ свСта Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ зСлСная окраска, Π° ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡƒΠ³Π»Π° – радуТная. АОА ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован ΠΊΠ°ΠΊ Π΄Π΅ΠΊΠΎΡ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ Π½Π° корпусах элСктронных ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² (ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ‹, Π½ΠΎΡƒΡ‚Π±ΡƒΠΊΠΈ, Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Ρ‹ ΠΈ Π΄Ρ€.) ΠΈ ΠΏΡ€ΠΈ создании ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π΄ΠΈΠ·Π°ΠΉΠ½Π° ΠΈΠ· алюминия ΠΈ Π΅Π³ΠΎ сплавов

    Effect of electrolyte composition on porous anodic aluminium oxide formation

    No full text
    The effect of composite anodizing electrolyte with reduced content of organic acids on the formation rate, structure and properties of aluminium oxide film was studied. It is established that for the production of electronic devices structural parts of improved insulation properties it is preferable to use the solutions where less active citric acid predominates. It has been shown that kinetic retardation of specified anodic process of aluminium oxidation increases the density of barrier oxide while preserving the rate of main porous Al[2]O[3] layer growth
    corecore