143 research outputs found
Non positively curved metric in the space of positive definite infinite matrices
We introduce a Riemannian metric with non positive curvature in the (infinite dimensional) manifold Σ∞ of positive invertible operators of a Hilbert space H, which are scalar perturbations of Hilbert-Schmidt operators. The (minimal) geodesics and the geodesic distance are computed. It is shown that this metric, which is complete, generalizes the well known non positive metric for positive definite complex matrices. Moreover, these spaces of finite matrices are naturally imbedded in Σ∞.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin
Quotient p-Schatten metrics on spheres
Let S(H) be the unit sphere of a Hilbert space H and Up(H) thegroup of unitary operators in H such that u−1 belongs to the p-Schatten idealBp(H). This group acts smoothly and transitively in S(H) and endows it witha natural Finsler metric induced by the p-norm kzkp = tr(zz∗)p/21/p. Thismetric is given bykvkx,p = min{kz − ykp : y ∈ gx},where z ∈ Bp(H)ah satisfies that (dÏ€x)1(z) = z · x = v and gx denotes theLie algebra of the subgroup of unitaries which fix x. We call z a lifting of v.A lifting z0 is called a minimal lifting if additionally kvkx,p = kz0kp. Inthis paper we show properties of minimal liftings and we treat the problemof finding short curves α such that α(0) = x and ˙α(0) = v with x ∈ S(H)and v ∈ TxS(H) given. Also we consider the problem of finding short curveswhich join two given endpoints x, y ∈ S(H).Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Antunez, Andrea. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentin
Metric geodesics of isometries in a Hilbert space and the extension problem
We consider the problem of finding short smooth curves of isometries in a Hilbert space H. The length of a smooth curve γ(t), t ∈ [0, 1], is measured by means of ∫^1-0 γ^. (t)ǀǀ dt, where ǀǀ ǀǀ denotes the usual norm of operators. The initial value problem is solved: for any isometry Vo and each tangent vector at V0 (which is an operator of the form iXV0 with X* = X) with norm less than or equal to Ï€, there exist curves of the form e^itZ V0, with initial velocity iZV0 = iXV0, which are short along their path. These curves, which we call metric geodesics, need not be unique, and correspond to the so called extension problem considered by M.G. Krein and others: in our context, given asymmetric operator X0|R(V0) : R(V0)→H, find all possible Z* = Z extending X0|R(V0) to all H, with ǀǀZǀǀ= ǀǀX0ǀǀ. We also consider the problem of finding metric geodesics joining two given isometries V0 and V1. It is well known that if there exists a continuous path joining V0 and V1, then both ranges have the same codimension. We show that if this number is finite, then there exist metric geodesics joining V0 and V1.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Universidad Simón BolÃvar; Venezuela. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentin
- …