25 research outputs found

    POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Get PDF
    Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer

    POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    Get PDF
    Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward direction at kinetic energies up to about 3.5 MeV. The optimal target thickness, the maximum acceleration energy and the angular distribution of emitted particles have been measured using ion collectors, X-ray CCD streak camera, SiC detectors and Thomson Parabola Spectrometer

    Self-focusing effect in Au-target induced by high power pulsed laser at PALS

    Get PDF
    AbstractSelf-focusing effects, induced by ASTERIX pulsed laser at PALS Laboratory of Prague, have been investigated. Laser was employed at the third harmonics (438 nm) and intensities of the order of 1016 W/cm2. Pure Au was used as thin target and irradiated with 30° incidence angle. An ion energy analyzer was employed to detect the energy-to-mass ratio of emitted ions from plasma. Measurements were performed by changing the focal point position with a high spatial resolution step-motor. Results demonstrated that non linear processes, due to self-focusing effects, occurs when the laser beam is focused at about 200 µm in front of the target surface. In such conditions, a new ion group, having high charge state and kinetic energy, is produced because of the increment in temperature of the laser-generated plasma

    Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma

    Get PDF
    AbstractUsing the PALS iodine laser system, Au ions with the charge state up to 58+ and with the kinetic energy as high as ~300 MeV were generated. The production of these ions was tested in dependence on the laser frequency (1ω, 3ω), on the irradiation/detection angles (0°, 30°), on the focus position with regard to the target surface, and on the target thickness (500 µm, 200 µm, 80 µm). A larger amount of the fastest ions was produced with 1ω than with 3ω, the most of the fast ions were recorded in the direction ~10°from the target normal, the optimum focus position is in front of the target and should be set on with a precision of 50 µm. The forward emission is weaker than the backward one for both of the thinner targets (which burn through) at our experimental conditions

    Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities

    Get PDF
    AbstractAngular distributions of currents and velocities (energies) of ions produced at various target irradiation angles and laser intensities ranged from 1010 W/cm2 to 1017 W/cm2 were analyzed. It was confirmed that for low laser intensities the ion current distributions are always peaked along the target normal. However, at laser intensities comparable to or higher than 1014 W/cm2, the preferred direction of ion emission strongly depends on the irradiation geometry (laser focus setting, the irradiation angle), and can be off the target normal. This is very likely caused by the non-linear interaction of the laser beam with produced plasma, in particular, by the action of ponderomotive forces and the laser beam self-focusing

    The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams

    Get PDF
    AbstractIntense laser-beam interactions with preformed plasma, preceding the laser-target interactions, significantly influence both the ion and X-ray generation. It is due to the laser pulse (its total length, the shape of the front edge, its background, the contrast, the radial homogeneity) as well as plasma (density, temperature) properties. Generation of the super fast (FF) ion groups is connected with a presence of non-linear processes. Saturated maximum of the charge states (independently on the laser intensity) is ascribed to the constant limit radius of the self-focused laser beam. Its longitudinal structure is considered as a possible explanation for the course of some experimental dependencies obtained

    ELIMED: MEDICAL APPLICATION AT ELI-BEAMLINES. STATUS OF THE COLLABORATION AND FIRST RESULTS

    Get PDF
    ELI-Beamlines is one of the four pillars of the ELI (Extreme Light Infrastructure) pan-European project. It will be an ultrahigh-intensity, high repetition-rate, femtosecond laser facility whose main goal is to generate and apply high-brightness X-ray sources and accelerated charged particles. In particular, medical applications are treated by the ELIMED task force, which has been launched by collaboration between ELI and INFN researchers. ELIMED aims to demonstrate the clinical applicability of laser accelerated ions. In this article, the state of the ELIMED project and the first scientific results are reported. The design and realisation of a preliminary beam handling system and of an advanced spectrometer for diagnostics of high energy (multi-MeV) laser-accelerated ion beams will also be briefly presented

    Ion acceleration with few cycle relativistic laser pulses from foil targets

    Full text link
    Ion acceleration resulting from the interaction of 11 fs laser pulses of ~35 mJ energy with ultrahigh contrast (<10^-10), and 10^19 W/cm^2 peak intensity with foil targets made of various materials and thicknesses at normal (0-degree) and 45-degree laser incidence is investigated. The maximum energy of the protons accelerated from both the rear and front sides of the target was above 1 MeV. A conversion efficiency from laser pulse energy to proton beam is estimated to be as high as ~1.4 % at 45-degree laser incidence using a 51 nm-thick Al target. The excellent laser contrast indicates the predominance of vacuum heating via the Brunels effect as an absorption mechanism involving a tiny pre-plasma of natural origin due to the Gaussian temporal laser pulse shape. Experimental results are in reasonable agreement with theoretical estimates where proton acceleration from the target rear into the forward direction is well explained by a TNSA-like mechanism, while proton acceleration from the target front into the backward direction can be explained by the formation of a charged cavity in a tiny pre-plasma. The exploding Coulomb field from the charged cavity also serves as a source for forward-accelerated ions at thick targets.Comment: 12 pages, 7 figures

    Electromagnetic pulses produced by expanding laser-produced Au plasma

    No full text
    The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP): the pulsed return current through the holder of the target and the outflow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe). The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses
    corecore