56 research outputs found

    Thermotropic Nematic and Smectic Order in Silica Glass Nanochannels

    Full text link
    Optical birefringence measurements on a rod-like liquid crystal (8OCB), imbibed in silica channels (7 nm diameter), are presented and compared to the thermotropic bulk behavior. The orientational and positional order of the confined liquid evolves continuously at the paranematic-to-nematic and sizeably broadened at the nematic-to-smectic order transition, resp., in contrast to the discontinuous and well-defined second-order character of the bulk transitions. A Landau-de-Gennes analysis reveals identical strengths of the nematic and smectic ordering fields (imposed by the walls) and indicates that the smectic order is more affected by quenched disorder (originating in channel tortuosity and roughness) than the nematic transition.Comment: 3 pages, 4 figure

    Application of retardation-modulation polarimetry in studies of nanocomposite materials

    Full text link
    We demonstrate an application of retardation-modulation polarimetry in studies of nanocomposite materials. Molecular ordering is explored on both nonchiral and chiral liquid crystals (LCs) in the bulk state and embedded into parallel-arrays of cylindrical channels of alumina or silica membranes of different channel sizes (12-42 nm). Two arms polarimetry serves for simultaneous measurements of the birefringence retardation and optical activity characterizing, respectively, orientational molecular ordering and chiral structuring inside nanochannels.Comment: Conference article, 5 pages, 5 figure

    Capillary rise of water in hydrophilic nanopores

    Full text link
    We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5nm and 5nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.Comment: 4 pages, 3 figure

    Thermotropic nematic order upon nano-capillary filling

    Full text link
    Optical birefringence and light absorption measurements reveal four regimes for the thermotropic behavior of a nematogen liquid (7CB) upon sequential filling of parallel-aligned capillaries of 12 nm diameter in a monolithic, mesoporous silica membrane. No molecular reorientation is observed for the first adsorbed monolayer. In the film-condensed state (up to 1 nm thickness) a weak, continuous paranematic-to-nematic (P-N) transition is found, which is shifted by 10 K below the discontinuous bulk transition at T_IN=305K. The capillary-condensed state exhibits a more pronounced, albeit still continuous P-N reordering, located 4 K below T_IN. This shift vanishes abruptly on complete filling of the capillaries, which we tentatively trace to a 10 MPa tensile pressure release associated with the disappearance of concave menisci in the confined liquid.Comment: 6 pages, 3 figure
    • …
    corecore