3 research outputs found

    The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis

    Get PDF
    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented

    Full-scale wind-tunnel investigation of effects of slot spoilers on the aerodynamic characteristics of a light twin-engine airplane

    Get PDF
    A wind-tunnel investigation has been conducted to determine the effects of slot spoilers on the longitudinal and lateral aerodynamic characteristics of a full-scale mockup of a light twin-engine airplane. The slots were located along the leading edge of the flaps and were used to modulate the flap-induced lift as a possible means of achieving direct lift control. The data showed that the slots were effective in spoiling up to 61 percent of the flap-induced lift, but that an adverse pitching-moment change (nose up) accompanied opening the slots. Opening the slots was found to decrease slightly the downwash angle at the tail and to increase slightly the longitudinal stability of the model

    A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    Get PDF
    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts
    corecore