2 research outputs found

    In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres

    Get PDF
    The purpose of this study was to design poly(lactide-co-glycolide) (PLGA) microspheres for the continuous delivery of the somatostatin analogue, vapreotide, over 2–4 weeks. The microspheres were produced by spray-drying and the desired characteristics, i.e. high encapsulation efficiency and controlled release over 2–4 weeks, achieved through optimizing the type of polymer, processing solvent, and co-encapsulated additive. The in vitro release was tested in fetal bovine serum preserved with 0.02% of thiomersal. Furthermore, formulations were injected intramuscularly into rats to obtain pharmacokinetic profiles. Encapsulation efficiency was between 34 and 91%, depending on the particular formulation. The initial peptide release (within 6 h) was lowest, i.e. 1 ng/ml) over 21–28 days in rats was the one made with end-group uncapped PLGA 50:50, the solvent acetic acid and the additive polyethyleneglycol. In conclusion, the optimization of formulation parameters allowed us to produce vapreotide-loaded PLGA microspheres of suitable characteristics for therapeutic use

    In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres

    No full text
    The purpose of this study was to design poly(lactide-co-glycolide) (PLGA) microspheres for the continuous delivery of the somatostatin analogue, vapreotide, over 2–4 weeks. The microspheres were produced by spray-drying and the desired characteristics, i.e. high encapsulation efficiency and controlled release over 2–4 weeks, achieved through optimizing the type of polymer, processing solvent, and co-encapsulated additive. The in vitro release was tested in fetal bovine serum preserved with 0.02% of thiomersal. Furthermore, formulations were injected intramuscularly into rats to obtain pharmacokinetic profiles. Encapsulation efficiency was between 34 and 91%, depending on the particular formulation. The initial peptide release (within 6 h) was lowest, i.e. 1 ng/ml) over 21–28 days in rats was the one made with end-group uncapped PLGA 50:50, the solvent acetic acid and the additive polyethyleneglycol. In conclusion, the optimization of formulation parameters allowed us to produce vapreotide-loaded PLGA microspheres of suitable characteristics for therapeutic use
    corecore