7 research outputs found

    Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model

    Get PDF
    The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic

    Lidar Observations in South America. Part I - Mesosphere and Stratosphere

    Get PDF
    South America covers a large area of the globe and plays a fundamental function in its climate change, geographical features, and natural resources. However, it still is a developing area, and natural resource management and energy production are far from a sustainable framework, impacting the air quality of the area and needs much improvement in monitoring. There are significant activities regarding laser remote sensing of the atmosphere at different levels for different purposes. Among these activities, we can mention the mesospheric probing of sodium measurements and stratospheric monitoring of ozone, and the study of wind and gravity waves. Some of these activities are long-lasting and count on the support from the Latin American Lidar Network (LALINET). We intend to pinpoint the most significant scientific achievements and show the potential of carrying out remote sensing activities in the continent and show its correlations with other earth science connections and synergies. In Part I of this chapter, we will present an overview and significant results of lidar observations in the mesosphere and stratosphere. Part II will be dedicated to tropospheric observations

    Lidar Observations in South America. Part II - Troposphere

    Get PDF
    In Part II of this chapter, we intend to show the significant advances and results concerning aerosols’ tropospheric monitoring in South America. The tropospheric lidar monitoring is also supported by the Latin American Lidar Network (LALINET). It is concerned about aerosols originating from urban pollution, biomass burning, desert dust, sea spray, and other primary sources. Cloud studies and their impact on radiative transfer using tropospheric lidar measurements are also presented

    Gravity Wave Parameters and Their Seasonal Variations Study near 120°E China Based on Na LIDAR Observations

    No full text
    Based on the established LIDAR chain along the 120°E meridian in China, the gravity wave (GW) activity between 80 and 105 km and the seasonal behavior of temporal and spatial spectra at Beijing, Hefei and Hainan were studied with three years of continued observations. The averaged GW-induced atmospheric density perturbations are near 6%, which in summer are obviously larger than in winter. The semiannual maxima occur near the solstice and the minimum emerges around the equinox at different latitudes. Besides, as a disparity, the density perturbation of GW is still active considerably in winter at low latitude at Hainan. The spectra of vertical wave number Fa(m) and observed frequency Fa(ω) show power law shapes, of which the average is near −3 and −1.7, respectively, and both spectra with special values all exhibit similar seasonal behavior as the atmospheric density perturbations shows. This behavior is explained by multiple effects possibly originating from Tibet plateau (TP) and the main GW source in China was roughly calculated by the LIDAR observation method for the first time located at the TP boundary

    Gravity Wave Parameters and Their Seasonal Variations Study near 120°E China Based on Na LIDAR Observations

    No full text
    Based on the established LIDAR chain along the 120°E meridian in China, the gravity wave (GW) activity between 80 and 105 km and the seasonal behavior of temporal and spatial spectra at Beijing, Hefei and Hainan were studied with three years of continued observations. The averaged GW-induced atmospheric density perturbations are near 6%, which in summer are obviously larger than in winter. The semiannual maxima occur near the solstice and the minimum emerges around the equinox at different latitudes. Besides, as a disparity, the density perturbation of GW is still active considerably in winter at low latitude at Hainan. The spectra of vertical wave number Fa(m) and observed frequency Fa(ω) show power law shapes, of which the average is near −3 and −1.7, respectively, and both spectra with special values all exhibit similar seasonal behavior as the atmospheric density perturbations shows. This behavior is explained by multiple effects possibly originating from Tibet plateau (TP) and the main GW source in China was roughly calculated by the LIDAR observation method for the first time located at the TP boundary

    C-Structures in Mesospheric Na and K Layers and Their Relations with Dynamical and Convective Instabilities

    No full text
    We analyzed the C-structures in the mesospheric metal layers. We used two datasets: one from a narrow band Sodium (Na) Density and Temperature LIDAR and the other from a high-resolution dual band Na and Potassium (K) LIDAR, both operated at São José dos Campos, Brazil (23° S, 46° W). We also investigated the Es layer occurrence and wind shear influences forming these structures. We found three C-type events over 82 analyzed nights in the first data set. They all showed lower temperatures inside C-structures compared to the borders. The squared Brunt-Väissälä frequency analyses showed positive values in the region of C-structures. In two out of three cases, dynamical instability was present (Ri < 0.25). We compared these results with the nine simultaneous C-type events identified in the 185 nights from the second data set. They showed height and time simultaneity correspondence as observed in the Na and K layers. Our results showed a low correlation between Es occurrence and C-structures. Additionally, strong wind shears in the altitude and time where C-structures appeared were always present. The advection of a metal cloud to the LIDAR station and a wind distortion seems to be the plausible mechanism that can explain all the observations

    Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model

    No full text
    The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic.</p
    corecore