19 research outputs found

    Prospective Evaluation of MGMT-Promoter Methylation Status and Correlations with Outcomes to Temozolomide-Based Chemotherapy in Well-Differentiated Neuroendocrine Tumors

    Get PDF
    Temozolomide (TEM) as a single agent or in combination with capecitabine (CAPTEM) is active in well-differentiated advanced neuroendocrine tumors (NETs) of gastro-entero-pancreatic and thoracic origin. The predictive role of MGMT-promoter methylation in this setting is controversial. We sought to prospectively evaluate the MGMT-promoter methylation status ability to predict outcomes to TEM-based chemotherapy in patients with NET. A single-center, prospective, observational study has been conducted at the ENETS Center-of-Excellence Outpatient Clinic of the IRCCS Policlinico Sant’Orsola-Malpighi in Bologna, Italy. Patients with advanced, gastro-entero-pancreatic or lung well-differentiated NETs candidate to TEM-based chemotherapy and with available tumor samples for MGMT-promoter methylation assessment were included. The MGMT-promoter methylation status was analyzed by using pyrosequencing. The primary endpoint was progression-free survival (PFS) by the MGMT-promoter methylation status. Secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. Survival outcomes were compared by restricted mean survival time (RMST) difference. Of 26 screened patients, 22 were finally enrolled in the study. The most frequent NET primary sites were the pancreas (64%) and the lung (23%). MGMT promoter was methylated in five tumors (23%). At a median follow-up time of 47.2 months (95%CI 29.3–89.7), the median PFS was 32.8 months (95%CI 17.2–NA), while the median OS was not reached. Patients in the methylated MGMT group, when compared to those in the unmethylated MGMT group, had longer PFS (median not reached [95%CI NA–NA] vs. 30.2 months [95%CI 15.2–NA], respectively; RMST p = 0.005) and OS (median not reached [95%CI NA–NA] vs. not reached [40.1–NA], respectively; RMST p = 0.019). After adjusting for confounding factors, the MGMT-promoter methylation status was independently associated to the PFS. Numerically higher ORR (60% vs. 24%; p = 0.274) and DCR (100% vs. 88%; p = 1.00) were observed in the methylated vs. unmethylated MGMT group. TEM-based chemotherapy was well-tolerated (adverse events grade ≥3 < 10%). In this prospective study, MGMT-promoter methylation predicted better outcomes to TEM-based chemotherapy in patients with NET

    How to manage KRAS G12C-mutated advanced non-small-cell lung cancer

    Get PDF
    Constitutive KRAS signalling drives tumorigenesis across several cancer types. In non-small-cell lung cancer (NSCLC) activating KRAS mutations occur in ~30% of cases, and the glycine to cysteine substitution at codon 12 (G12C) is the most common KRAS alteration. Although KRAS mutations have been considered undruggable for over 40 years, the recent discovery of allelic-specific KRAS inhibitors has paved the way to personalized cancer medicine for patients with tumours harbouring these mutations. Here, we review the current treatment landscape for patients with advanced NSCLCs harbouring a KRAS G12C mutation, including PD-(L) 1-based therapies and direct KRAS inhibitors as well as sequential treatment options. We also explore the possible mechanisms of resistance to KRAS inhibition and strategies to overcome resistance in patients with KRAS G12C-mutant NSCLC

    Efficiency Optimization of Ge-V Quantum Emitters in Single-Crystal Diamond upon Ion Implantation and HPHT Annealing

    Get PDF
    The authors report on the characterization at the single-defect level of germanium-vacancy (GeV) centers in diamond produced upon Ge− ion implantation and different subsequent annealing processes, with a specific focus on the effect of high-pressure-high-temperature (HPHT) processing on their quantum-optical properties. Different post-implantation annealing conditions are explored for the optimal activation of GeV centers, namely, 900 °C 2 h, 1000 °C 10 h, 1500 °C 1 h under high vacuum, and 2000 °C 15 min at 6 GPa pressure. A systematic analysis of the relevant emission properties, including the emission intensity in saturation regime and the excited state radiative lifetime, is performed on the basis of a set of ion-implanted samples, with the scope of identifying the most suitable conditions for the creation of GeV centers with optimal quantum-optical emission properties. The main performance parameter adopted here to describe the excitation efficiency of GeV centers as single-photon emitters is the ratio between the saturation optical excitation power and the emission intensity at saturation. The results show an up to eightfold emission efficiency increase in HPHT-treated samples with respect to conventional annealing in vacuum conditions, suggesting a suitable thermodynamic pathway toward the repeatable fabrication of ultra-bright GeV centers for single-photon generation purposes

    Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges

    No full text
    Large cell neuroendocrine carcinoma of the lung (LCNEC) is a rare and highly aggressive type of lung cancer, with a complex biology that shares similarities with both small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The prognosis of LCNEC is poor, with a median overall survival of 8–12 months. The diagnosis of LCNEC requires the identification of neuroendocrine morphology and the expression of at least one of the neuroendocrine markers (chromogranin A, synaptophysin or CD56). In the last few years, the introduction of next-generation sequencing allowed the identification of molecular subtypes of LCNEC, with prognostic and potential therapeutic implications: one subtype is similar to SCLC (SCLC-like), while the other is similar to NSCLC (NSCLC-like). Because of LCNEC rarity, most evidence comes from small retrospective studies and treatment strategies that are extrapolated from those adopted in patients with SCLC and NSCLC. Nevertheless, limited but promising data about targeted therapies and immune checkpoint inhibitors in patients with LCNEC are emerging. LCNEC clinical management is still controversial and standardized treatment strategies are currently lacking. The aim of this manuscript is to review clinical and molecular data about LCNEC to better understand the optimal management and the potential prognostic and therapeutic implications of molecular subtypes

    Prognostic Factors of Survival for High-Grade Neuroendocrine Neoplasia of the Bladder: A SEER Database Analysis

    No full text
    Background: High-grade neuroendocrine carcinoma (NEC) is a rare and aggressive variant of bladder cancer. Considering its rarity, its therapeutic management is challenging and not standardized. Methods: We analyzed data extracted from the Surveillance, Epidemiology, and End Results (SEER) registry to evaluate prognostic factors for high-grade NEC of the bladder. Results: We extracted data on 1134 patients: 77.6% were small cell NEC, 14.6% were NEC, 5.5% were mixed neuro-endocrine non-neuroendocrine neoplasia, and 2.3% were large cell NEC. The stage at diagnosis was localized for 45% of patients, lymph nodal disease (N+M0) for 9.2% of patients, and metastatic disease for 26.1% of patients. The median overall survival (OS) was 12 months. Multivariate analysis detected that factors associated with worse OS were age being >72 years old (HR 1.94), lymph nodal involvement (HR 2.01), metastatic disease (HR 2.04), and the size of the primary tumor being >44.5 mm (HR 1.80). In the N0M0 populations, the size of the primary tumor being <44.5 mm, age being <72 years old, and major surgery were independently associated with a lower risk of death. In the N+M0 group, the size of the primary lesion was the only factor to retain an association with OS. Conclusions: Our SEER database analysis evidenced prognostic factors for high-grade NEC of the bladder that are of pivotal relevance to guide treatment and the decision-making process

    The Mechanisms of PD-L1 Regulation in Non-Small-Cell Lung Cancer (NSCLC): Which Are the Involved Players?

    No full text
    Treatment with inhibition of programmed cell death 1 (PD-1) or its ligand (PD-L1) improves survival in advanced non-small-cell lung cancer (NSCLC). Nevertheless, only a subset of patients benefit from treatment and biomarkers of response to immunotherapy are lacking. Expression of PD-L1 on tumor cells is the primary clinically-available predictive factor of response to immune checkpoint inhibitors, and its relevance in cancer immunotherapy has fostered several studies to better characterize the mechanisms that regulate PD-L1 expression. However, the factors associated with PD-L1 expression are still not well understood. Genomic alterations that activate KRAS, EGFR, and ALK, as well as the loss of PTEN, have been associated with increased PD-L1 expression. In addition, PD-L1 expression is reported to be increased by amplification of CD274, and decreased by STK11 deficiency. Furthermore, PD-L1 expression can be modulated by either tumor extrinsic or intrinsic factors. Among extrinsic factors, the most prominent one is interferon-γ release by immune cells, while there are several tumor intrinsic factors such as activation of the mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Myc pathways that can increase PD-L1 expression. A deeper understanding of PD-L1 expression regulation is crucial for improving strategies that exploit inhibition of this immune checkpoint in the clinic, especially in NSCLC where it is central in the therapeutic algorithm. We reviewed current preclinical and clinical data about PD-L1 expression regulation in NSCLC

    Immune checkpoint inhibitors in lung tumors with rare histologies and other thoracic malignancies

    No full text
    In recent years, immunotherapy has significantly changed the treatment of locally advanced/metastatic non-small-cell lung cancer (NSCLC). Conversely, the role of immunotherapy in NSCLC with uncommon histologies remains unclear, while in other rare thoracic malignancies, such as malignant pleural mesothelioma and thymic epithelial tumors, the use of immune checkpoint inhibitors is modifying therapeutic strategies with solid hopes for the future. However, larger prospective studies are urgently needed to define the best treatment strategies and the role of immunotherapy in these orphan tumors. This review provides a comprehensive overview of the emerging role of immunotherapy in the treatment of patients affected by these rare thoracic malignancies

    Large Cell Neuroendocrine Carcinoma of the Lung: Current Understanding and Challenges

    No full text
    Large cell neuroendocrine carcinoma of the lung (LCNEC) is a rare and highly aggressive type of lung cancer, with a complex biology that shares similarities with both small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The prognosis of LCNEC is poor, with a median overall survival of 8–12 months. The diagnosis of LCNEC requires the identification of neuroendocrine morphology and the expression of at least one of the neuroendocrine markers (chromogranin A, synaptophysin or CD56). In the last few years, the introduction of next-generation sequencing allowed the identification of molecular subtypes of LCNEC, with prognostic and potential therapeutic implications: one subtype is similar to SCLC (SCLC-like), while the other is similar to NSCLC (NSCLC-like). Because of LCNEC rarity, most evidence comes from small retrospective studies and treatment strategies that are extrapolated from those adopted in patients with SCLC and NSCLC. Nevertheless, limited but promising data about targeted therapies and immune checkpoint inhibitors in patients with LCNEC are emerging. LCNEC clinical management is still controversial and standardized treatment strategies are currently lacking. The aim of this manuscript is to review clinical and molecular data about LCNEC to better understand the optimal management and the potential prognostic and therapeutic implications of molecular subtypes
    corecore