33 research outputs found

    Islands of shape coexistence from single-particle spectra in covariant density functional theory

    Full text link
    Using covariant density functional theory with the DDME2 functional and labeling single-particle energy orbitals by Nilsson quantum numbers, a search for particle-hole (p-h) excitations connected to the appearance of shape coexistence is performed for Z=38 to 84. Islands of shape coexistence are found near the magic numbers Z=82 and Z=50, restricted in regions around the relevant neutron midshells N=104 and N=66 respectively, in accordance to the well accepted p-h interpretation of shape coexistence in these regions, which we call neutron-induced shape coexistence, since the neutrons act as elevators creating holes in the proton orbitals. Similar but smaller islands of shape coexistence are found near N=90 and N=60, restricted in regions around the relevant proton midshells Z=66 and Z=39 respectively, related to p-h excitations across the 3-dimensional isotropic harmonic oscillator (3D-HO) magic numbers N=112 and N=70, which correspond to the beginning of the participation of the opposite parity orbitals 1i13/2 and 1h11/2 respectively to the onset of deformation. We call this case proton-induced shape coexistence, since the protons act as elevators creating holes in the neutron orbitals, thus offering a possible microscopic mechanism for the appearance of shape coexistence in these regions. In the region around N=40, Z=40, an island is located on which both neutron p-h excitations and proton p-h excitations are present.Comment: 21 pages, 17 figure

    Shape coexistence in even-even nuclei: A theoretical overview

    Full text link
    The last decade has seen a rapid growth of our understanding of the microscopic origins of shape coexistence, assisted by the new data provided by the modern radioactive ion beam facilities built worldwide. Islands of the nuclear chart in which shape coexistence can occur have been identified, and the different microscopic particle-hole excitation mechanisms leading to neutron-induced or proton-induced shape coexistence have been clarified. The relation of shape coexistence to the islands of inversion, appearing in light nuclei, to the new spin-aligned phase appearing in N=Z nuclei, as well as to shape/phase transitions occurring in medium mass and heavy nuclei, has been understood. In the present review, these developments are considered within the shell model and mean field approaches, as well as by symmetry methods. In addition, based on systematics of data, as well as on symmetry considerations, quantitative rules are developed, predicting regions in which shape coexistence can appear, as a possible guide for further experimental efforts, which can help in improving our understanding of the details of the nucleon-nucleon interaction, as well as of its modifications occurring far from stability.Comment: 80 pages, 14 figures, 837 reference

    Microscopic origin of shape coexistence in the N=90, Z=64 region

    Full text link
    A microscopic explanation of the nature of shape coexistence in the N=90, Z=64 region is suggested, based on calculations of single particle energies through standard covariant density functional theory. It is suggested that shape coexistence in the N=90 region is caused by the protons, which create neutron particle-hole (p-h) excitations across the N=112 3-dimensional isotropic harmonic oscillator (3D-HO) magic number, signaling the start of the occupation of the 1i13/2 intruder orbital, which triggers stronger proton-neutron interaction, causing the onset of the deformation and resulting in the shape/phase transition from spherical to deformed nuclei described by the X(5) critical point symmetry. A similar effect is seen in the N=60, Z=40 region, in which p-h excitations across the N=70 3D-HO magic number occur, signaling the start of the occupation of the 1h11/2 intruder orbital.Comment: 6 pages, 7 figure
    corecore