13 research outputs found

    The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis

    Get PDF
    Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors(1). Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2(V617F) (JAK2(VF)) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease(1,2). Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2(VF) selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2(VF) lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2(VF) lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1 beta reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2(VF) macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1 beta or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk

    Modeling leukemia stem cells with patient-derived induced pluripotent stem cells

    No full text
    Patient-derived induced pluripotent stem cells (iPSCs) have recently provided a new way to model acute myeloid leukemia (AML) and other myeloid malignancies. Here, we describe methods for the generation of patient-derived iPSCs from leukemia cells and for their subsequent directed in vitro differentiation into hematopoietic cells that recapitulate features of leukemia stem cells (LSCs) and leukemic blasts

    LiPS-A3S, a human genomic site for robust expression of inserted transgenes

    No full text
    Transgenesis of human pluripotent stem cells (hPSCs) can enable and empower a variety of studies in stem cell research, including lineage tracing and functional genetics studies. While in recent years much progress has been made in the development of tools for gene targeting, little attention has been given to the identification of sites in the human genome where transgenes can be inserted and reliably expressed. In order to find human genomic sites capable of supporting long-term and high-level transgene expression in hPSCs, we performed a lentiviral screen in human induced pluripotent stem cells (iPSCs). We isolated 40 iPSC clones each harboring a single vector copy and characterized the level of transgene expression afforded by each unique integration site. We selected one clone, LiPS-A3 with an integration site in chromosome 15 maintaining robust expression without silencing and demonstrate that different transgenes can be inserted therein rapidly and efficiently through recombinase-mediated cassette exchange (RMCE). The LiPS-A3 line can greatly facilitate the insertion of reporter and other genes in hPSCs. Targeting transgenes in the LiPS-A3S genomic locus can find broad applications in stem cell research and possibly cell and gene therapy

    Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene

    No full text
    Human pluripotent stem cells (hPSCs) hold great promise for cell therapy. However, a major concern is the risk of tumor formation by residual undifferentiated cells contaminating the hPSC-derived cell product. Suicide genes could safeguard against such adverse events by enabling elimination of cells gone astray, but the efficacy of this approach has not yet been thoroughly tested. Here, we engineered a lentivirally encoded herpes simplex virus thymidine kinase (HSVtk) with expression restricted to undifferentiated hPSCs through regulation by the let7 family of miRNAs. We show that induced pluripotent stem cells (iPSCs) expressing a let7-regulated HSVtk transgene are selectively killed by ganciclovir (GCV), whereas differentiated cells are fully protected. However, in contrast to previous studies, we find that in vivo GCV administration results in longer latency but does not prevent teratoma formation by iPSCs expressing either a constitutive or a let7-regulated HSVtk, without evidence of silencing of the HSVtk. Clonal analyses of iPSCs expressing HSVtk revealed frequent emergence of GCV resistance which, at least in some cases, could be attributed to preexisting inactivating mutations in the HSVtk coding sequence, selected for upon GCV treatment. Our findings have important consequences for the future use of suicide genes in hPSC-based cell therapies

    Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells

    No full text
    Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs. [Display omitted] •AML-iPSC-derived hematopoietic cells recapitulate a LSC hierarchy•iLSCs can be easily prospectively isolated•A LSC 16-gene set correlates with AML patient survival•The RUNX1 TF is critical for the maintenance of LSCs across AML genetic subgroups Wesely et al. report that AML-iPSC-derived hematopoietic cells are hierarchically organized and contain cells with hallmark features of LSCs (iLSCs). Through integrative genomic studies of bulk and single-cell transcriptomes and chromatin accessibility, they derive a LSC gene signature and identify RUNX1 as an AML LSC dependency with therapeutic implications

    Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs

    No full text
    Summary: Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs—with none, one, or both genetic lesions—we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases. : Papapetrou and colleagues develop a comprehensive panel of isogenic iPSC lines with SRSF2 P95L mutation and chr7q deletion. They use these cells to identify cellular phenotypes contributed by each genetic lesion and therapeutic vulnerabilities specific to each one and develop expandable hematopoietic progenitor cell lines to facilitate drug discovery. Keywords: induced pluripotent stem cells, myelodysplastic syndrome, CRISPR/Cas9, gene editing, mutational cooperation, splicing factor mutations, spliceosomal mutations, SRSF2, chr7q deletio

    Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and chromatin landscape of SF3B1-mutant HSPCs

    No full text
    : SF3B1K700E is the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which it drives MDS pathogenesis remain unclear. We derived a panel of 18 genetically matched SF3B1K700E- and SF3B1WT-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS) harboring isolated SF3B1K700E mutations and performed RNA and ATAC sequencing in purified CD34+/CD45+ hematopoietic stem/progenitor cells (HSPCs) derived from them. We developed a novel computational framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1K700E splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient cells. The chromatin landscape of SF3B1K700E HSPCs showed increased priming toward the megakaryocyte- erythroid lineage. Transcription factor motifs enriched in chromatin regions more accessible in SF3B1K700E cells included, unexpectedly, motifs of the TEA domain (TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel transcriptional regulator of SF3B1K700E cells. This study provides a comprehensive characterization of the transcriptional and chromatin landscape of SF3B1K700E HSPCs and nominates novel mis-spliced genes and transcriptional programs with putative roles in MDS-RS disease biology

    Supplementary Figures 1-8 from Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia

    No full text
    Supplemental Figure 1. Generation of a panel of iPSCs from patients with AML. Supplemental Figure 2. Reprogramming aids reconstruction of the evolutionary history and clonal composition of AML. Supplemental Figure 3. Transplantation of AML-iPSCs into immunodeficient mice. Supplemental Figure 4. Developmental block in a subset of AML-iPSC lines. Supplemental Figure 5. Transplantation of primary AML cells and patient-matched AMLiPSC lines. Supplemental Figure 6. Single-cell RNA-sequencing analyses of matched primary and iPSC-derived leukemia cells from patient AML-47. Supplemental Figure 7. Cell cycle and pseudotime analyses. Supplemental Figure 8. Comparison of scRNA-Seq data integration and clustering methods and pseudobulk differential gene expression analyses.</p

    Supplementary Tables 1-6 from Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia

    No full text
    Table S1. Patient characteristics. AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasm; ET: essential thrombocythemia; PBMCs: peripheral blood mononuclear cells; BMMCs: bone marrow mononuclear cells; PDX: patient-derived xenografts Table S2. All patient samples used in this study with genetic characterization and reprogramming outcomes. Blue font denotes partially reprogrammed (as opposed to bona fide iPSC) colonies and clones. Table S3. All AML-iPSC lines phenotypically characterized. Table S4. Top 50 upregulated genes (highest log2 fold change) in each cluster. Table S5. Primers used for genotyping. Table S6. Primers used for qRT-PCR analyses.</p
    corecore