7 research outputs found

    Porous Natural Diamond with Embedded Metal (Pt<sub>0.50</sub>–Co<sub>0.50</sub>)

    No full text
    Natural diamond crystals with a highly porous surface were used as substrates for synthesizing single-phase bimetallic Pt–Co nanoparticles at temperatures of 500 °C and 800 °C. The metal nanoparticles inside the pores were determined to take the form of single-phase Pt0.50Co0.50 solid solutions with different degrees of superstructure ordering. A detailed characterization of both nanoalloys revealed a tetragonal symmetry with a space group, P4/mmm. For the sample obtained at 500 °C, the lattice parameters were a = 2.673(2), c = 3.735(3) Å, and c/a = 1.397(1); for the samples obtained at 800 °C, the parameters were—a = 2.688(2), c = 3.697(3) Å, and c/a = 1.375(1). Within the experimental parameters, no significant chemical interaction of the diamond with the Pt–Co particles was identified. The results demonstrate a strong anchoring effect of the metallic material within the etching pores. The successful synthesis of bimetallic Pt–Co particles embedded inside the caverns can facilitate a study of their magnetic properties. The presence of Pt–Co in specific diamond compositions can also be used for marking diamond crystals as a means for their subtle identification, as well as confirming the possibility of capturing significant amounts of metal along with diamonds during their dissolution in the deep Earth

    Pd-Ceria/CNMs Composites as Catalysts for CO and CH<sub>4</sub> Oxidation

    No full text
    The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were studied in the reactions of CO and CH4 oxidation. The instrumental methods showed that the defective sites of carbon nanomaterials (CNMs) successfully stabilize the deposited components in a highly-dispersed state: PdO and CeO2 nanoparticles, subnanosized PdOx and PdxCe1−xO2−δ clusters with an amorphous structure, as well as single Pd and Ce atoms, are formed. It was shown that the reactant activation process occurs on palladium species with the participation of oxygen from the ceria lattice. The presence of interblock contacts between PdO and CeO2 nanoparticles has an important effect on oxygen transfer, which consequently affects the catalytic activity. The morphological features of the CNMs, as well as the defect structure, have a strong influence on the particle size and mutual stabilization of the deposited PdO and CeO2 components. The optimal combination of highly dispersed PdOx and PdxCe1−xO2−δ species, as well as PdO nanoparticles in the CNTs-based catalyst, makes it highly effective in both studied oxidation reactions

    Pd/CeO2-SnO2 catalysts with varying tin content: Promotion of catalytic properties and structure modification

    No full text
    1%Pd/CeO2-SnO2 catalysts with varying Ce/Sn ratio were synthesized by counter-precipitation followed by calcination in a wide temperature range. The catalysts with Ce/Sn < 3/1 possess high thermal stability after calcination up to 1000 ◦C while maintaining low-temperature activity in CO oxidation. The PdOx clusters serving as active centers in CO oxidation are modified by Sn upon calcination. High tin content (Ce/Sn = 1/3) provides the activity of the catalysts in CH4 oxidation due to stabilization of PdO nanoparticles in the form of core@shell PdO@(CeO2 + SnO2) structures. Formation of the nanoheterophase structure upon calcination plays a key role in the stabilization of Pd-active centers of different types

    Pd-Ce-Ox/MWCNTs and Pt-Ce-Ox/MWCNTs Composite Materials: Morphology, Microstructure, and Catalytic Properties

    No full text
    The composite nanomaterials based on noble metals, reducible oxides, and nanostructured carbon are considered to be perspective catalysts for many useful reactions. In the present work, multi-walled carbon nanotubes (MWCNTs) were used for the preparation of Pd-Ce-Ox/MWCNTs and Pt-Ce-Ox/MWCNTs catalysts comprising the active components (6 wt%Pd, 6 wt%Pt, 20 wt%CeO2) as highly dispersed nanoparticles, clusters, and single atoms. The application of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) provided analysis of the samples&rsquo; morphology and structure at the atomic level. For Pd-Ce-Ox/MWCNTs samples, the formation of PdO nanoparticles with an average crystallite size of ~8 nm was shown. Pt-Ce-Ox/MWCNTs catalysts comprised single Pt2+ ions and PtOx clusters less than 1 nm. A comparison of the catalytic properties of the samples showed higher activity of Pd-based catalysts in CO and CH4 oxidation reactions in a low-temperature range (T50 = 100 &deg;C and T50 = 295 &deg;C, respectively). However, oxidative pretreatment of the samples resulted in a remarkable enhancement of CO oxidation activity of Pt-Ce-Ox/MWCNTs catalyst at T &lt; 20 &deg;C (33% of CO conversion at T = 0 &deg;C), while no changes were detected for the Pd-Ce-Ox/MWCNTs sample. The revealed catalytic effect was discussed in terms of the capability of the Pt-Ce-Ox/MWCNTs system to form unique PtOx clusters providing high catalytic activity in low-temperature CO oxidation

    [NiEn<sub>3</sub>](MoO<sub>4</sub>)<sub>0.5</sub>(WO<sub>4</sub>)<sub>0.5</sub> Co-Crystals as Single-Source Precursors for Ternary Refractory Ni–Mo–W Alloys

    No full text
    The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown
    corecore