20 research outputs found

    ARDD 2020: from aging mechanisms to interventions

    Get PDF
    Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA

    Mammalian Target of Rapamycin Signaling and Autophagy: Roles in Lymphangioleiomyomatosis Therapy

    No full text
    The pace of progress in lymphangioleiomyomatosis (LAM) is remarkable. In the year 2000, TSC2 gene mutations were found in LAM cells; in 2001 the tuberous sclerosis complex (TSC) genes were discovered to regulate cell size in Drosophila via the kinase TOR (target of rapamycin); and in 2008 the results were published of a clinical trial of rapamycin, a specific inhibitor of TOR, in patients with TSC and LAM with renal angiomyolipomas. This interval of just 8 years between a genetic discovery for which the relevant signaling pathway was as yet unknown, to the initiation, completion, and publication of a clinical trial, is an almost unparalleled accomplishment in modern biomedical research. This robust foundation of basic, translational, and clinical research in TOR, TSC, and LAM is now poised to optimize and validate effective therapeutic strategies for LAM. An immediate challenge is to deduce the mechanisms underlying the partial response of renal angiomyolipomas to rapamycin, and thereby guide the design of combinatorial approaches. TOR complex 1 (TORC1), which is known to be active in LAM cells, is a key inhibitor of autophagy. One hypothesis, which will be explored here, is that low levels of autophagy in TSC2-null LAM cells limits their survival under conditions of bioenergetic stress. A corollary of this hypothesis is that rapamycin, by inducing autophagy, promotes the survival of LAM cells, while simultaneously arresting their growth. If this hypothesis proves to be correct, then combining TORC1 inhibition with autophagy inhibition may represent an effective clinical strategy for LAM

    Downregulation of the tyrosine degradation pathway extends Drosophila lifespan

    No full text
    Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.publishe
    corecore