33 research outputs found

    Singlet state encoded magnetic resonance (SISTEM) spectroscopy

    Full text link
    Magnetic resonance spectroscopy (MRS) allows the analysis of biochemical processes non invasively and in vivo. Still, its application in clinical diagnostics is rare. Routine MRS is limited to spatial, chemical and temporal resolutions of cubic centimetres, mM and minutes. In fact, the signal of many metabolites is strong enough for detection, but the resonances significantly overlap, exacerbating identification and quantification. In addition, the signals of water and lipids are much stronger and dominate the entire spectrum. To suppress the background and isolate selected signals, usually, relaxation times, J-coupling and chemical shifts are used. Here, we propose methods to isolate the signals of selected molecular groups within endogenous metabolites by using long-lived spin states (LLS). We exemplify the method by preparing the LLSs of coupled protons in the endogenous molecules N-acetyl-L-aspartic acid (NAA). First, we store polarization in long-lived, double spin states and then apply saturation pulses and double quantum filters to suppress background signals. We show that LLS can be used to selectively prepare and measure the signals of chosen metabolites or drugs in the presence of water, inhomogeneous field and highly concentrated fatty solutions. The pH measurement presented here is one of the possible applications.Comment: 15 pages, 5 figures and supporting material

    Coherent transfer of nuclear spin polarization in field-cycling NMR experiments

    Get PDF
    Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non- adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization

    High resolution NMR study of T1 magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    Get PDF
    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met- enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T1-relaxation times at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution

    Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible

    Get PDF
    A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring

    Exploiting Level Anti-Crossings (LACs) in the rotating frame for transferring spin hyperpolarization

    Get PDF
    A method of transferring hyperpolarization among scalar-coupled nuclear spins is proposed, which is based on spin mixing at energy Level Anti-Crossing (LAC) regions. To fulfill LAC conditions a resonant RF-field was applied with properly set frequency and amplitude. In this situation LACs occur between the nuclear spin levels in the rotating doubly tilted reference frame. The validity of the approach is demonstrated by taking as an example the transfer of para-hydrogen induced polarization in a symmetric molecule, whose coupled spin network can be modeled as a four-spin AA′MM′-system with two pairs of ‘isochronous’ spins. For this spin system LAC positions have been identified; rules for the sign of spin polarization have been established. The dependence of the polarization transfer efficiency on the RF-field parameters and on the time profile of switching off the RF-field has been studied in detail; experimental results are in excellent agreement with the theory developed. In general, exploiting LACs in the rotating doubly tilted frame is a powerful tool for manipulating hyperpolarization in multispin systems

    Magnetic field dependent long-lived spin states in amino acids and dipeptides

    Get PDF
    Magnetic field dependence of long-lived spin states (LLSs) of the β-CH2 protons of aromatic amino acids was studied. LLSs are spin states, which are immune to dipolar relaxation, thus having lifetimes far exceeding the longitudinal relaxation times; the simplest example of an LLS is given by the singlet state of two coupled spins. LLSs were created by means of the photo- chemically induced dynamic nuclear polarization technique. The systems studied were amino acids, histidine and tyrosine, with different isotopomers. For labeled amino acids with the α-CH and aromatic protons substituted by deuterium at low fields the LLS lifetime, TLLS, for the β-CH2 protons was more than 40 times longer than the T1-relaxation time. Upon increasing the number of protons the ratio TLLS/T1 was reduced; however, even in the fully protonated amino acids it was about 10; that is, the long-lived mode was still preserved in the system. In addition, the effect of paramagnetic impurities on spin relaxation was studied; field dependencies of T1 and TLLS were measured. LLSs were also formed in tyrosine-containing dyads; a TLLS/T1 ratio of [similar]7 was found, usable for extending the spin polarization lifetime in such systems

    Analysis of Nutation Patterns in Fourier-Transform NMR of Non-Thermally Polarized Multispin Systems

    Get PDF
    The complex spin order of hyperpolarized multispin systems giving rise to anomalous NMR spectral patterns that vary with the RF excitation angle is analyzed by decomposing its nutation behavior in a superposition of Fourier harmonics. The product operator formalism is applied to calculating the spectral contributions of the various mutual alignments of scalar coupled spins. Two cases are treated, namely systems exhibiting only differences in population of their spin states and systems showing in addition zero-quantum coherences between states, a situation often seen at hyperpolarization. After deriving the general solution a number of representative examples are discussed in detail. The theoretical treatment is applied to analyzing the spin order observed in a hyperpolarized two-spin system that is prepared in the singlet state by para-hydrogen induced polarization

    Influence of spin 1/2 hetero-nuclei on spin relaxation and polarization transfer among strongly coupled protons

    Get PDF
    Effects of spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of protons were studied in a situation where spin ½ hetero- nuclei are present in the molecule. As in earlier works [K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys.129, 234513 (2008)10.1063/1.3040272;S. E. Korchak, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys.133, 194502 (2010)10.1063/1.3495988], spin-spin interactions have a pronounced effect on the relaxivity tending to equalize the longitudinal relaxation times once the spins become strongly coupled at a sufficiently low magnetic field. In addition, we have found influence of 19F nuclei on the proton NMRD, although in the whole field range, studied protons and fluorine spins were only weakly coupled. In particular, pronounced features in the proton NMRD were found; but each feature was predominantly observed only for particular spin states of the hetero-nuclei. The features are explained theoretically; it is shown that hetero-nuclei can affect the proton NMRD even in the limit of weak coupling when (i) protons are coupled strongly and (ii) have spin-spin interactions of different strengths with the hetero-nuclei. We also show that by choosing the proper magnetic field strength, one can selectively transfer proton spin magnetization between spectral components of choice
    corecore