6 research outputs found

    Impact ionization fronts in Si diodes: Numerical evidence of superfast propagation due to nonlocalized preionization

    Full text link
    We present numerical evidence of a novel propagation mode for superfast impact ionization fronts in high-voltage Si p+p^+-nn-n+n^+ structures. In nonlinear dynamics terms, this mode corresponds to a pulled front propagating into an unstable state in the regime of nonlocalized initial conditions. Before the front starts to travel, field-ehanced emission of electrons from deep-level impurities preionizes initially depleted nn base creating spatially nonuniform free carriers profile. Impact ionization takes place in the whole high-field region. We find two ionizing fronts that propagate in opposite directions with velocities up to 10 times higher than the saturated drift velocity.Comment: 3 pages, 4 figure

    Theory of superfast fronts of impact ionization in semiconductor structures

    Get PDF
    We present an analytical theory for impact ionization fronts in reversely biased p^{+}-n-n^{+} structures. The front propagates into a depleted n base with a velocity that exceeds the saturated drift velocity. The front passage generates a dense electron-hole plasma and in this way switches the structure from low to high conductivity. For a planar front we determine the concentration of the generated plasma, the maximum electric field, the front width and the voltage over the n base as functions of front velocity and doping of the n base. Theory takes into account that drift velocities and impact ionization coefficients differ between electrons and holes, and it makes quantitative predictions for any semiconductor material possible.Comment: 18 pagers, 10 figure

    Model of Morphogenesis

    No full text
    We build a theoretical model of morphogenesis. This model describes cell fate in the developing organism using the notion of epigenetic code of each cell. Namely, given the epigenetic spectra of a cell and its neighboring cells, we can determine the corresponding cell event it will perform. This means that the properties of a group of cells (comprising an embryo or its part) at any time point are also known, and thus, the evolution of an embryo can be described. By this strategy, it is possible to establish the tissue, organ, or embryo shapes at any time, starting from a zygote. As an essential part of the model, the formalization of the notion of cell potency is introduced, and the related properties are discussed

    Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization

    No full text
    Cancer Stem Cells (CSC), a subset of cancer cells resembling normal stem cells with self-renewal and asymmetric division capabilities, are present at various but low proportions in many tumors and are thought to be responsible for tumor relapses following conventional cancer therapies. In vitro, most intriguingly, isolated CSCs rapidly regenerate the original population of stem and non-stem cells (non-CSCs) as shown by various investigators. This phenomenon still remains to be explained. We propose a mathematical model of cancer cell population dynamics, based on the main parameters of cell population growth, including the proliferation rates, the rates of cell death and the frequency of symmetric and asymmetric cell divisions both in CSCs and non-CSCs sub-populations, and taking into account the stabilization phenomenon. The analysis of the model allows determination of time-varying corridors of probabilities for different cell fates, given the particular dynamics of cancer cells populations; and determination of a cell-cell communication factors influencing these time-varying probabilities of cell behavior (division, transition) scenarios. Though the results of the model have to be experimentally confirmed, we can anticipate the development of several fundamental and practical applications based on the theoretical results of the model

    Morphogenesis software based on epigenetic code concept

    No full text
    The process of morphogenesis is an evolution of shape of an organism together with the differentiation of its parts. This process encompasses numerous biological processes ranging from embryogenesis to regeneration following crisis such as amputation or transplantation. A fundamental theoretical question is where exactly do these instructions for (re-)construction reside and how are they implemented? We have recently proposed a set of concepts, aiming to respond to these questions and to provide an appropriate mathematical formalization of the geometry of morphogenesis [1]. First, we consider a possibility that the evolution of shape is determined by epigenetic information, responsible for realization of different types of cell events. Second, we suggest a set of rules for converting this epigenetic information into instructive signals for cell event for each cell, as well as for transforming it after each cell event. Next we give notions of cell state, determined by its epigenetic array, and cell event, which is a change of cell state, and formalize development as a graph (tree) of cell states connected by 5 types of cell events, corresponding to the processes of cell division, cell growth, cell death, cell movement and cell differentiation. Here we present a Morphogenesis software capable to simulate an evolution of a 3D embryo starting from zygote, following a set of rules, based on our theoretical assumptions, and thus to provide a proof-of-concept of the hypothesis of epigenetic code regulation. The software creates a developing embryo and a corresponding graph of cell events according to the zygotic epigenetic spectrum and chosen parameters of the developmental rules. Variation of rules influencing the resulting shape of an embryo may help elucidating the principal laws underlying pattern formation
    corecore