6 research outputs found

    Radical Cationic Pathway for the Decay of Ionized Glyme Molecules in Liquid Solution

    No full text
    Chemical stability of primary radical cations (RCs) generated in irradiated matter determines substantially the radiation resistance of organic materials. Transformations of the RCs of the glyme molecules, R­(−O–CH<sub>2</sub>–CH<sub>2</sub>−)<sub><i>n</i></sub>O–R (R = CH<sub>3</sub>, <i>n</i> = 1–4) has been studied on the nanosecond time scale by measuring the magnetic field effects in the recombination fluorescence from irradiated liquid solutions of the glymes. In all cases, the RCs observed were different from that expected for the primary ones and revealed very similar hyperfine couplings independent of the poly­(ethylene oxide) chain length and of the substitution of terminal methyl groups by C<sub>2</sub>H<sub>5</sub> or CH<sub>2</sub>CH<sub>2</sub>Cl, as has been shown with diglyme as an example. Quantum chemical analysis of possible chemical transformations for the monoglyme RC as a model system allowed us to discover the reaction pathway yielding the methyl vinyl ether RC. The pathway involves intramolecular proton transfer followed by C–O bond cleavage. Only one (−O–CH<sub>2</sub>–CH<sub>2</sub>–O−) fragment is involved in this transformation, which is nearly barrierless due to the catalytic effect of adjacent glyme molecules. The rapid formation of the methyl vinyl ether RC in the irradiated monoglyme was confirmed by the numerical simulation of the experimental curves of the time-resolved magnetic field effect. These findings suggest that the R′–O–CHCH<sub>2</sub><sup>•+</sup> formation is a typical decay pathway for the primary RCs in irradiated liquid glymes

    Synthesis of Sterically Shielded Nitroxides Using the Reaction of Nitrones with Alkynylmagnesium Bromides

    No full text
    Sterically shielded nitroxides, which demonstrate high resistance to bioreduction, are the spin labels of choice for structural studies inside living cells using pulsed EPR and functional MRI and EPRI in vivo. To prepare new sterically shielded nitroxides, a reaction of cyclic nitrones, including various 1-pyrroline-1-oxides, 2,5-dihydroimidazole-3-oxide and 4H-imidazole-3-oxide with alkynylmagnesium bromide wereused. The reaction gave corresponding nitroxides with an alkynyl group adjacent to the N-O moiety. The hydrogenation of resulting 2-ethynyl-substituted nitroxides with subsequent re-oxidation of the N-OH group produced the corresponding sterically shielded tetraalkylnitroxides of pyrrolidine, imidazolidine and 2,5-dihydroimidazole series. EPR studies revealed large additional couplings up to 4 G in the spectra of pyrrolidine and imidazolidine nitroxides with substituents in 3- and/or 4-positions of the ring

    The Reactions of 6-(Hydroxymethyl)-2,2-dimethyl-1-azaspiro[4.4]nonanes with Methanesulfonyl Chloride or PPh3-CBr4

    No full text
    Activation of a hydroxyl group towards nucleophilic substitution via reaction with methanesulfonyl chloride or PPh3-CBr4 system is a commonly used pathway to various functional derivatives. The reactions of (5R(S),6R(S))-1-X-6-(hydroxymethyl)-2,2-dimethyl- 1-azaspiro[4.4]nonanes 1a–d (X = O·; H; OBn, OBz) with MsCl/NR3 or PPh3-CBr4 were studied. Depending on substituent X, the reaction afforded hexahydro-1H,6H-cyclopenta[c]pyrrolo[1,2-b]isoxazole (2) (for X = O), a mixture of 2 and octahydrocyclopenta[c]azepines (4–6) (for X = OBn, OBz), or perhydro-cyclopenta[2,3]azeto[1,2-a]pyrrol (3) (for X = H) derivatives. Alkylation of the latter with MeI with subsequent Hofmann elimination afforded 2,3,3-trimethyl-1,2,3,4,5,7,8,8a-octahydrocyclopenta[c]azepine with 56% yield

    Novel Biradicals for Direct Excitation Highfield Dynamic Nuclear Polarization

    No full text
    Synthesis of novel trityl-nitroxyl biradicals and their performance as polarization agents in DNP-enhanced solid-state MAS NMR spectroscopy is presented. Signal enhancements in <sup>1</sup>H, <sup>1</sup>H → <sup>13</sup>C CP MAS, and <sup>13</sup>C MAS experiments obtained with these radicals dissolved in 1,1,2,2-tetrachloroethane (TCE) solution are compared with the enhancements obtained from TCE solutions of binitroxyl radicals. The signal enhancements are correlated with the distance between the radical centers of the biradicals, as determined by theoretical structure calculations. Some of the biradical TCE solutions display direct-channel resonances in <sup>13</sup>C MAS experiments as well as indirect channel resonances induced via the proton spin reservoir. Differential scanning calorimetry reveals that only these solutions do not form any solid crystalline phases upon rapid cooling, suggesting that molecular motions needed for polarization transfer from radicals to <sup>13</sup>C via the proton spin reservoir remain active at the experimental low temperatures of nominal 120 K. DNP magnetic field sweep enhancement profiles for selected new biradicals are presented as well. These indicate that the DNP transfer is dominated by the cross-effect mechanism
    corecore