1 research outputs found

    New Family of Six Stable Metals with a Nearly Isotropic Triangular Lattice of Organic Radical Cations and Diluted Paramagnetic System of Anions: Īŗ(Īŗ<sub>āŠ„</sub>)ā€‘(BDH-TTP)<sub>4</sub>MX<sub>4</sub>Ā·Solv, where M = Co<sup>II</sup>, Mn<sup>II</sup>; X = Cl, Br, and Solv = (H<sub>2</sub>O)<sub>5</sub>, (CH<sub>2</sub>X<sub>2</sub>)

    No full text
    A new family of six paramagnetic metals, namely, Īŗ-(BDH-TTP)<sub>4</sub>Ā­CoCl<sub>4</sub>Ā­Ā·(H<sub>2</sub>O)<sub>5</sub> (<b>I</b>), Īŗ-(BDH-TTP)<sub>4</sub>Ā­Co<sub>0.54</sub>Mn<sub>0.46</sub>Cl<sub>4</sub>Ā­Ā·(H<sub>2</sub>O)<sub>5</sub> (<b>II</b>), Īŗ-(BDH-TTP)<sub>4</sub>Ā­MnCl<sub>4</sub>Ā­Ā·(H<sub>2</sub>O)<sub>5</sub> (<b>III</b>), Īŗ<sub>āŠ„</sub>-(BDH-TTP)<sub>4</sub>Ā­CoBr<sub>4</sub>Ā­Ā·(CH<sub>2</sub>Cl<sub>2</sub>) (<b>IV</b>), Īŗ<sub>āŠ„</sub>-(BDH-TTP)<sub>4</sub>Ā­MnBr<sub>4</sub>Ā­Ā·(CH<sub>2</sub>Cl<sub>2</sub>) (<b>V</b>), and Īŗ<sub>āŠ„</sub>-(BDH-TTP)<sub>4</sub>Ā­MnBr<sub>4</sub>Ā­Ā·(CH<sub>2</sub>Br<sub>2</sub>) (<b>VI</b>), has been synthesized and characterized by X-ray crystallography, four-probe conductivity measurements, SQUID magnetometry, and calculations of electronic structure. The newly discovered Īŗ<sub>āŠ„</sub>-type packing motif of organic layers differs from the parent Īŗ-type by a series of longitudinal shifts of BDH-TTP radical cations in the crystal structure. Salts <b>I</b>ā€“<b>VI</b> form two isostructural groups: <b>I</b>ā€“<b>III</b> (Īŗ) and <b>IV</b>ā€“<b>VI</b> (Īŗ<sub>āŠ„</sub>). Salts <b>I</b>ā€“<b>III</b> are isostructural to the previously discovered Īŗ-(BDH-TTP)<sub>2</sub>Ā­Fe<sup>III</sup>X<sub>4</sub> (X = Cl, Br) even though the charge of FeX<sub>4</sub><sup>ā€“</sup> anions is half that of the MX<sub>4</sub><sup>2ā€“</sup> (M = Co, Mn) anions. The tetrahedral anions are disordered in <b>I</b>ā€“<b>III</b> but completely ordered in <b>IV</b>ā€“<b>VI</b>. The type of included solvent molecule is solely determined by the anion size. The paramagnetic subsystem is effectively spin diluted either by anion disorder (<b>I</b>ā€“<b>III</b>) or by spatial separation (<b>IV</b>ā€“<b>VI</b>). The Weiss constants are virtually zero for all compounds (e.g., ĪøĀ­(<b>III</b>) = 0.0056 K, ĪøĀ­(<b>V</b>) = āˆ’0.076 K). Curie constants are dominated by anion paramagnetic centers indicating high spin states 5/2 for Mn<sup>II</sup> and 3/2 for Co<sup>II</sup> with large spinā€“orbital coupling. All compounds retain metallic properties down to 4.2 K. There is a magnetic breakdown gap of width (<i>w</i>) in the chiral salts <b>IV</b>ā€“<b>VI</b>: <i>w</i>(<b>IV</b>) > <i>w</i>(<b>V</b>) ā‰ˆ <i>w</i>(<b>VI</b>) but no gap in the centrosymmetric salts <b>I</b>ā€“<b>III</b>. Electronic structure calculations at room temperature revealed a nearly isotropic triangular lattice in <b>I</b>ā€“<b>III</b> and a honeycomb lattice in <b>IV</b>ā€“<b>VI</b> with an extreme geometric spin frustration exceeding the level reported for the quantum ā€œspin liquidā€ Īŗ-(BEDT-TTF)<sub>2</sub>Ā­Cu<sub>2</sub>(CN)<sub>3</sub>
    corecore