6,563 research outputs found
Analysis of experimental results of the inlet for the NASA hypersonic research engine aerothermodynamic integration model
An aerodynamic engine inlet analysis was performed on the experimental results obtained at nominal Mach numbers of 5, 6, and 7 from the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM). Incorporation on the AIM of the mixed-compression inlet design represented the final phase of an inlet development program of the HRE Project. The purpose of this analysis was to compare the AIM inlet experimental results with theoretical results. Experimental performance was based on measured surface pressures used in a one-dimensional force-momentum theorem. Results of the analysis indicate that surface static-pressure measurements agree reasonably well with theoretical predictions except in the regions where the theory predicts large pressure discontinuities. Experimental and theoretical results both based on the one-dimensional force-momentum theorem yielded inlet performance parameters as functions of Mach number that exhibited reasonable agreement. Previous predictions of inlet unstart that resulted from pressure disturbances created by fuel injection and combustion appeared to be pessimistic
Experimental and analytical study of an inlet forebody for an airframe-integrated scramjet concept
Preliminary analytical and experimental inlet forebody investigations have been conducted at Mach numbers of 6.0 and 8.5. The forebody design concept consisted of a sharp-nosed right circular cone followed by elliptical cross sections. This concept resulted in swept isentropic compression which would allow swept cowl leading edges. Measurements were made to define the condition of the inviscid flow field developed by the forebody, including flow profiles in the vicinity of cowl leading-edge stations, and the three-dimensional boundary-layer effects. The investigation verified some of the expected differences between the predicted and the experimental results
An inlet analysis for the NASA hypersonic research engine aerothermodynamic integration model
A theoretical analysis for the inlet of the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM) has been undertaken by use of a method-of-characteristics computer program. The purpose of the analysis was to obtain pretest information on the full-scale HRE inlet in support of the experimental AIM program (completed May 1974). Mass-flow-ratio and additive-drag-coefficient schedules were obtained that well defined the range effected in the AIM tests. Mass-weighted average inlet total-pressure recovery, kinetic energy efficiency, and throat Mach numbers were obtained
Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration
The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented
Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance
The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests
Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 2: Mach 6 performance
Computer program performance results of a Mach 6 hypersonic research engine during supersonic and subsonic combustion modes were presented. The combustion mode transition was successfully performed, exit surveys made, and effects of altitude, angle of attack, and inlet spike position were determined during these tests
Langley Mach 4 scramjet test facility
An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research
Microwave Spectroscopy
Contains research objectives and reports on three research projects.Lincoln Laboratory, Purchase Order DDL BB-107U. S. Air Force under Contract AF 19(608)-50
Vortices in a Bose-Einstein Condensate
We have created vortices in two-component Bose-Einstein condensates. The
vortex state was created through a coherent process involving the spatial and
temporal control of interconversion between the two components. Using an
interference technique, we map the phase of the vortex state to confirm that it
possesses angular momentum. We can create vortices in either of the two
components and have observed differences in the dynamics and stability.Comment: 4 pages with 3 figure
-minimal surface and manifold with positive -Bakry-\'{E}mery Ricci curvature
In this paper, we first prove a compactness theorem for the space of closed
embedded -minimal surfaces of fixed topology in a closed three-manifold with
positive Bakry-\'{E}mery Ricci curvature. Then we give a Lichnerowicz type
lower bound of the first eigenvalue of the -Laplacian on compact manifold
with positive -Bakry-\'{E}mery Ricci curvature, and prove that the lower
bound is achieved only if the manifold is isometric to the -shpere, or the
-dimensional hemisphere. Finally, for compact manifold with positive
-Bakry-\'{E}mery Ricci curvature and -mean convex boundary, we prove an
upper bound for the distance function to the boundary, and the upper bound is
achieved if only if the manifold is isometric to an Euclidean ball.Comment: 15 page
- …