376 research outputs found

    Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait

    Full text link
    Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±9114C yr BP to 34,600±640 14C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers

    Quantum carpet interferometry for trapped atomic Bose-Einstein condensates

    Full text link
    We propose an ``interferometric'' scheme for Bose-Einstein condensates using near-field diffraction. The scheme is based on the phenomenon of intermode traces or quantum carpets; we show how it may be used in the detection of weak forces.Comment: 4 figures. Submitted to Phys. Rev.

    On the harmonic measure of stable processes

    Full text link
    Using three hypergeometric identities, we evaluate the harmonic measure of a finite interval and of its complementary for a strictly stable real L{\'e}vy process. This gives a simple and unified proof of several results in the literature, old and recent. We also provide a full description of the corresponding Green functions. As a by-product, we compute the hitting probabilities of points and describe the non-negative harmonic functions for the stable process killed outside a finite interval

    Nonlinear waves in a cylindrical Bose-Einstein condensate

    Full text link
    We present a complete calculation of solitary waves propagating in a steady state with constant velocity v along a cigar-shaped Bose-Einstein trap approximated as infinitely-long cylindrical. For sufficiently weak couplings (densities) the main features of the calculated solitons could be captured by effective one-dimensional (1D) models. However, for stronger couplings of practical interest, the relevant solitary waves are found to be hybrids of quasi-1D solitons and 3D vortex rings. An interesting hierarchy of vortex rings occurs as the effective coupling constant is increased through a sequence of critical values. The energy-momentum dispersion of the above structures is shown to exhibit characteristics similar to a mode proposed sometime ago by Lieb within a strictly 1D model, as well as some rotonlike features.Comment: 10 pages, 12 figure

    Radiocarbon Date List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern North Atlantic

    Full text link
    Date List X contains an annotated listing of 213 radiocarbon dates determined on samples from marine and terrestrial environments. The marine samples were collected from the East Greenland, Iceland, Spitzbergen, and Norwegian margins, Baffin Bay, and Labrador Sea. The terrestrial samples were collected from Vestfirdir, Iceland and Baffin Island. The samples were submitted by INSTAAR and researchers affiliated with INSTAAR\u27s Micropaleontology Laboratory under the direction of Dr.’s John T. Andrews and Anne E. Jennings. All of the dates from marine sediment cores were determined from either shells or foraminifera (both benthic and planktic). All dates were obtained by the Accelerator Mass Spectrometry (AMS) method. Regions of concentrated marine research include: Baffin Bay, Baffin Island, Labrador Sea, East Greenland fjords, shelf and slope, Denmark Strait, the southwestern and northwestern Iceland shelves, and Vestfirdir, Iceland. The non-marine radiocarbon dates are from peat, wood, plant microfossils, and mollusc. The radiocarbon dates have been used to address a variety of research objectives such as: 1. determining the timing of northern hemisphere high latitude environmental changes including glacier advance and retreat, and 2. assessing the accuracy of a fluctuating reservoir correction. Thus, most of the dates constrain the timing, rate, and interaction of late Quaternary paleoenvironmental fluctuations in sea level, glacier extent, sediment input, and changes in ocean circulation patterns. Where significant, stratigraphic and sample contexts are presented for each core to document the basis for interpretations

    Exploring the importance of authigenic clay formation in the global Li cycle

    Get PDF
    Lithium isotopic (δ7Li) and elemental concentrations of pore fluids and carbonates from IODP Site U1338 Hole A (eastern equatorial Pacific Ocean) suggest that clay authigenesis (i.e., in situ precipitation) is a significant sink for Li in carbonate-rich sedimentary sections. Systematic variations in pore fluid δ7Li with depth in the section suggest that clay authigenesis can (i) strongly decrease pore fluid Li concentrations with depth and (ii) fractionate Li isotopically to a considerable degree (Δ ∼ 5–21‰ relative to seawater). We hypothesize that clay authigenesis in carbonate-rich sections occurs due to the presence of reactive biogenic silica, and reactive transport modeling supports the contention that the pore fluid δ7Li depth profile at Site U1338 is best explained by faster authigenesis at depth. The significance of clay authigenesis in carbonate-rich sediments is two-fold: if global in scale, (i) it can generate sizeable output fluxes in the global Li cycle, and (ii) the evolution of the sedimentary system over time can markedly impact the isotopic composition of the global Li output flux. We compile ODP and IODP pore fluid Li data from 267 sites; of these, 207 have Li pore fluid concentration gradients in the upper 50–100 meters that indicate the sites as diffusive sinks of Li. We then estimate that clay authigenesis in carbonate-rich sediments could reasonably generate a Li output flux on the order of ∼1.2·1010 moles/year, which is comparable to the gross input fluxes in the modern Li cycle. A series of reactive transport simulations illustrate how clay authigenesis might impact the isotopic composition of the output flux of Li from the global ocean. The suggestion is that applying a constant fractionation factor from the global ocean over time is likely incorrect, and that secular changes in the δ7Li of the output flux will be driven by rates of authigenesis, burial rates, and the depth extent of authigenesis in the sedimentary section. Utilizing a time-dependent, depositional diagenetic model, the δ7Li values of bulk carbonate are shown to be a consequence not of recrystallization alone, but recrystallization in the presence of clay authigenesis. Further, our model results are used to illustrate how carbonate δ7Li may be used to constrain the temporal evolution of clay authigenesis in the sedimentary section. Ultimately, this work suggests that the Li isotopic composition of bulk carbonates can be altered diagenetically. However, such alteration is not a detriment, but provides useful information on those diagenetic processes in the sedimentary column that impact the global Li cycle. Thus, Li isotopes in bulk carbonates have the potential to elucidate diagenetic controls on the global Li cycle over long time scales

    Surface Effects in Magnetic Microtraps

    Full text link
    We have investigated Bose-Einstein condensates and ultra cold atoms in the vicinity of a surface of a magnetic microtrap. The atoms are prepared along copper conductors at distances to the surface between 300 um and 20 um. In this range, the lifetime decreases from 20 s to 0.7 s showing a linear dependence on the distance to the surface. The atoms manifest a weak thermal coupling to the surface, with measured heating rates remaining below 500 nK/s. In addition, we observe a periodic fragmentation of the condensate and thermal clouds when the surface is approached.Comment: 4 pages, 4 figures; v2: corrected references; v3: final versio

    Simple method for excitation of a Bose-Einstein condensate

    Full text link
    An appropriate, time-dependent modification of the trapping potential may be sufficient to create effectively collective excitations in a cold atom Bose-Einstein condensate. The proposed method is complementary to earlier suggestions and should allow the creation of both dark solitons and vortices.Comment: 8 pages, 7 figures, version accepted for publication in Phys. Rev.

    Magnetic fields in protoplanetary disks

    Full text link
    Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.Comment: 11 pages, 11 figs, aastex.cls. Accepted for publication in Astrophysics & Space Science. v3 corrects bibliograph

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat
    • …
    corecore