668 research outputs found

    Minimizing Leakage in Thin Walled Structures Printed through Selective Laser Melting

    Get PDF
    In this project, the scan strategy of selective laser melting (SLM) for thin walled structures was investigated by changing laser parameters and tool path. Producing thin walled structures is difficult due to defects such as warpage and porosity. A layer on the SLM 125 consists of hatch volume, fill contours, and borders, however, for thin walls, hatch volume can become unavailable, resulting in a solely border/fill contour laser tool path. Three central composite designs (CCD) were created to optimize the laser parameters of borders to minimize leakage rate and porosity. The two factors changed were border laser power and scanning speed. The center points of the CCDs were 0.24 J/mm, 0.20 J/mm, and 0.16 J/mm, respectively. This border linear energy density value was calculated by (border laser power / border scanning speed). A machined aluminum fixture was designed and assembled with pneumatics to perform a pressure drop leakage test. Additionally, micrographs of 500μm and 200μm wall thicknesses were analyzed to study between and within layers as well as melt pool dimensions. In the 200μm thick samples, there was delamination and insufficient overlap in border only prints. For border only prints, a lower border linear energy density is recommended, similar to Cal Poly’s hatch volume optimized parameters of 0.15 J/mm

    Screened selection design for randomised phase II oncology trials : an example in chronic lymphocytic leukaemia

    Get PDF
    BACKGROUND: As there are limited patients for chronic lymphocytic leukaemia trials, it is important that statistical methodologies in Phase II efficiently select regimens for subsequent evaluation in larger-scale Phase III trials. METHODS: We propose the screened selection design (SSD), which is a practical multi-stage, randomised Phase II design for two experimental arms. Activity is first evaluated by applying Simon’s two-stage design (1989) on each arm. If both are active, the play-the-winner selection strategy proposed by Simon, Wittes and Ellenberg (SWE) (1985) is applied to select the superior arm. A variant of the design, Modified SSD, also allows the arm with the higher response rates to be recommended only if its activity rate is greater by a clinically-relevant value. The operating characteristics are explored via a simulation study and compared to a Bayesian Selection approach. RESULTS: Simulations showed that with the proposed SSD, it is possible to retain the sample size as required in SWE and obtain similar probabilities of selecting the correct superior arm of at least 90%; with the additional attractive benefit of reducing the probability of selecting ineffective arms. This approach is comparable to a Bayesian Selection Strategy. The Modified SSD performs substantially better than the other designs in selecting neither arm if the underlying rates for both arms are desirable but equivalent, allowing for other factors to be considered in the decision making process. Though its probability of correctly selecting a superior arm might be reduced, it still performs reasonably well. It also reduces the probability of selecting an inferior arm. CONCLUSIONS: SSD provides an easy to implement randomised Phase II design that selects the most promising treatment that has shown sufficient evidence of activity, with available R codes to evaluate its operating characteristics

    The Effect of Distal Core Flattening and Heat Treatment on 304 Stainless Steel Guide Wires

    Get PDF
    The mechanical response of 304 stainless steel guide wires due to different temper conditions and amounts of flattening is to be explored in this project. For this specific project, there is no public literature on the mechanical properties of guide wires with the above conditions through tensile testing or Turns to Failure Testing. To address this, the project with Abbott Vascular will measure the mechanical properties of guide wires using the aforementioned factors. Due to a lack of previous literature on this research topic, there are no quantitative goals for the project, however, any new research compiled in this area will be beneficial. As a result of the COVID-19 pandemic, current limitations to lab access prevent new data from being collected on guide wires, so this report will mainly focus on existing data from wire manufacturers. Available tensile properties of 304 stainless steel at varying cold work levels will be taken into account to better understand guide wire behavior and allow us to suggest the next steps in order to progress this project in the future

    Obstructive Sleep Apnoea: Therapeutic Options and Challenges

    Get PDF
    Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).Obstructive sleep apnoea (OSA) is a common sleep disorder that is associated with significant negative health outcomes including cardiovascular disease, daytime sleepiness, neurocognitive deficits, and increased motor vehicle and workplace accidents. There is wide variation in OSA symptoms and other downstream effects between patients highlighting the need to individualise therapy. Continuous positive airway pressure delivered by a face mask is the gold standard treatment, but adherence to this therapy is poor and improvements in outcomes are often incomplete. A range of alternative treatments are available and may suit different patients. These include behavioural treatments such as weight loss, mandibular advancement using an oral device, sleep posture modification, upper airway surgery, and upper airway muscle stimulation. Towards individualised OSA therapy, novel phenotyping approaches are being developed to identify the specific pathophysiological causes of OSA applying to individual patients. Furthermore, research is underway to help identify patients with OSA at higher risk of daytime sleepiness and adverse cardiovascular and neurocognitive consequences and predict how individuals might respond to treatment. In this article, we review the prevalence, risk factors, and main consequences of OSA; the main treatment modalities available at present; and some new methods for phenotyping patients with OSA that hold promise for a more personalised and effective approach to screening, diagnosis, and treatment

    Biomimetic chromatophores for camouflage and soft active surfaces

    Get PDF
    Abstract Chromatophores are the pigment-containing cells in the skins of animals such as fish and cephalopods which have chromomorphic (colour-changing) and controllable goniochromic (iridescent-changing) properties. These animals control the optical properties of their skins for camouflage and, it is speculated, for communication. The ability to replicate these properties in soft artificial skin structures opens up new possibilities for active camouflage, thermal regulation and active photovoltaics. This paper presents the design and implementation of soft and compliant artificial chromatophores based on the cutaneous chromatophores in fish and cephalopods. We demonstrate artificial chromatophores that are actuated by electroactive polymer artificial muscles, mimicking the radially orientated muscles found in natural chromatophores. It is shown how bio-inspired chromomorphism may be achieved using both areal expansion of dielectric elastomer structures and by the hydrostatic translocation of pigmented fluid into an artificial dermal melanophore

    Avirulent Strains of Toxoplasma Gondii Infect Macrophages by Active Invasion from the Phagosome

    Get PDF
    Unlike most intracellular pathogens that gain access into host cells through endocytic pathways, Toxoplasma gondii initiates infection at the cell surface by active penetration through a moving junction and subsequent formation of a parasitophorous vacuole. Here, we describe a noncanonical pathway for T. gondii infection of macrophages, in which parasites are initially internalized through phagocytosis, and then actively invade from within a phagosomal compartment to form a parasitophorous vacuole. This phagosome to vacuole invasion (PTVI) pathway may represent an intermediary link between the endocytic and the penetrative routes for host cell entry by intracellular pathogens. The PTVI pathway is preferentially used by avirulent strains of T. gondii and confers an infectious advantage over virulent strains for macrophage tropism
    corecore