34 research outputs found

    Association of low level viremia with inflammation and mortality in HIV-infected adults.

    Get PDF
    BackgroundWhether HIV viremia, particularly at low levels is associated with inflammation, increased coagulation, and all-cause mortality is unclear.MethodsThe associations of HIV RNA level with C-reactive protein (CRP), fibrinogen, interleukin (IL)-6 and mortality were evaluated in 1116 HIV-infected participants from the Study of Fat Redistribution and Metabolic Change in HIV infection. HIV RNA level was categorized as undetectable (i.e., "target not detected"), 1-19, 20-399, 400-9999, and ≥ 10,000 copies/ml. Covariates included demographics, lifestyle, adipose tissue, and HIV-related factors.ResultsHIV RNA level had little association with CRP. Categories of HIV RNA below 10,000 copies/ml had similar levels of IL-6 compared with an undetectable HIV RNA level, while HIV RNA ≥ 10,000 copies/ml was associated with 89% higher IL-6 (p<0.001). This association was attenuated by ~50% after adjustment for CD4+ cell count. Higher HIV RNA was associated with higher fibrinogen. Compared to an undetectable HIV RNA level, fibrinogen was 0.6%, 1.9%, 4.5%, 4.6%, and 9.4% higher across HIV RNA categories, respectively, and statistically significant at the highest level (p = 0.0002 for HIV RNA ≥ 10,000 copies/ml). Higher HIV RNA was associated with mortality during follow-up in unadjusted analysis, but showed little association after adjustment for CD4+ cell count and inflammation.ConclusionHIV RNA ≥ 10,000 copies/ml was associated with higher IL-6 and fibrinogen, but lower levels of viremia appeared similar, and there was little association with CRP. The relationship of HIV RNA with IL-6 was strongly affected by CD4 cell depletion. After adjustment for CD4+ cell count and inflammation, viremia did not appear to be substantially associated with mortality risk over 5 years

    Early Antiretroviral Therapy Reduces AIDS Progression/Death in Individuals with Acute Opportunistic Infections: A Multicenter Randomized Strategy Trial

    Get PDF
    Background: Optimal timing of ART initiation for individuals presenting with AIDS-related OIs has not been defined. Methods and Findings: A5164 was a randomized strategy trial of ‘‘early ART’’ - given within 14 days of starting acute OI treatment versus ‘‘deferred ART’’ - given after acute OI treatment is completed. Randomization was stratified by presenting OI and entry CD4 count. The primary week 48 endpoint was 3-level ordered categorical variable: 1. Death/AIDS progression; 2. No progression with incomplete viral suppression (ie HIV viral load (VL) [greater than or equal to] 50 copies/ml); 3. No progression with optimal viral suppression (ie HIV VL <50 copies/ml). Secondary endpoints included: AIDS progression/death; plasma HIV RNA and CD4 responses and safety parameters including IRIS. 282 subjects were evaluable; 141 per arm. Entry OIs included Pneumocytis jirovecii pneumonia 63%, cryptococcal meningitis 12%, and bacterial infections 12%. The early and deferred arms started ART a median of 12 and 45 days after start of OI treatment, respectively. The difference in the primary endpoint did not reach statistical significance: AIDS progression/death was seen in 20 (14%) vs. 34 (24%); whereas no progression but with incomplete viral suppression was seen in 54 (38%) vs. 44 (31%); and no progression with optimal viral suppression in 67 (48%) vs 63 (45%) in the early vs. deferred arm, respectively (p = 0.22). However, the early ART arm had fewer AIDS progression/deaths (OR = 0.51; 95% CI = 0.27–0.94) and a longer time to AIDS progression/death (stratified HR = 0.53; 95% CI = 0.30–0.92). The early ART had shorter time to achieving a CD4 count above 50 cells/mL (p<0.001) and no increase in adverse events. Conclusions: Early ART resulted in less AIDS progression/death with no increase in adverse events or loss of virologic response compared to deferred ART. These results support the early initiation of ART in patients presenting with acute AIDS-related OIs, absent major contraindications

    International Cohort Analysis of the Antiviral Activities of Zidovudine and Tenofovir in the Presence of the K65R Mutation in Reverse Transcriptaseâ–¿

    No full text
    A K65R mutation in HIV-1 reverse transcriptase can occur with the failure of tenofovir-, didanosine-, abacavir-, and, in some cases, stavudine-containing regimens and leads to reduced phenotypic susceptibility to these drugs and hypersusceptibility to zidovudine, but its clinical impact is poorly described. We identified isolates with the K65R mutation within the Stanford Resistance Database and a French cohort for which subsequent treatment and virological response data were available. The partial genotypic susceptibility score (pGSS) was defined as the genotypic susceptibility score (GSS) excluding the salvage regimen's nucleoside reverse transcriptase inhibitor (NRTI) component. A three-part virologic response variable was defined (e.g., complete virologic response, partial virologic response, and no virologic response). Univariate, multivariate, and bootstrap analyses evaluated factors associated with the virologic response, focusing on the contributions of zidovudine and tenofovir. Seventy-one of 130 patients (55%) achieved a complete virologic response (defined as an HIV RNA level of <200 copies/ml). In univariate analyses, pGSS and zidovudine use in the salvage regimen were predictors of the virologic response. In a multivariate analysis, pGSS and zidovudine and tenofovir use were associated with the virologic response. Bootstrap analyses showed similar reductions in HIV RNA levels with zidovudine or tenofovir use (0.5 to 0.9 log10). In the presence of K65R, zidovudine and tenofovir are associated with similar reductions in HIV RNA levels. Given its tolerability, tenofovir may be the preferred agent over zidovudine even in the presence of the K65R mutation

    Safety and Efficacy of Enfuvirtide in Combination with Darunavir-Ritonavir and an Optimized Background Regimen in Treatment-Experienced Human Immunodeficiency Virus-Infected Patients: the Below the Level of Quantification Studyâ–¿

    No full text
    Enfuvirtide is the first fusion and entry inhibitor approved for use for the treatment of human immunodeficiency virus (HIV) type 1 infection and as such represents a novel class of agents. For the population of patients experienced with three antiretroviral classes, enfuvirtide provides an additional option for treatment. This prospective, open-label, 24-week, single-arm trial assessed the efficacy and safety of enfuvirtide (90 mg injected subcutaneously twice daily) in combination with darunavir-ritonavir (600/100 mg administered orally twice daily) in triple-antiretroviral-class-experienced adults failing their current regimen. The primary efficacy endpoint was the proportion of participants with plasma HIV RNA loads of <50 copies/ml. Other virological and immunological measures were also evaluated, as were the effects of the baseline viral coreceptor tropism and darunavir phenotype sensitivity scores on the outcomes. At week 24, 60.3%, 72.5%, and 84.0% of 131 participants achieved viral loads of <50 copies/ml and <400 copies/ml and a change from the baseline load of ≥1 log10 copies/ml, respectively. A baseline viral load of ≤5 log10 copies/ml was a significant predictor of achieving a viral load of <50 copies/ml at 24 weeks; however, neither background genotype sensitivity nor darunavir phenotype sensitivity was a significant predictor of the achievement of viral loads of <50 copies/ml. Although these findings are limited by the relatively small numbers of participants with darunavir susceptibility changes of ≥10-fold, they suggest that combining enfuvirtide and darunavir-ritonavir with an optimized background regimen in triple-class experienced participants naïve to these agents can result in positive virological and immunological responses regardless of most baseline parameters

    Evolution of Primary Protease Inhibitor Resistance Mutations during Protease Inhibitor Salvage Therapy

    No full text
    In order to track the evolution of primary protease inhibitor (PI) resistance mutations in human immunodeficiency virus type 1 (HIV-1) isolates, baseline and follow-up protease sequences were obtained from patients undergoing salvage PI therapy who presented initially with isolates containing a single primary PI resistance mutation. Among 78 patients meeting study selection criteria, baseline primary PI resistance mutations included L90M (42% of patients), V82A/F/T (27%), D30N (21%), G48V (6%), and I84V (4%). Despite the switching of treatment to a new PI, primary PI resistance mutations present at the baseline persisted in 66 of 78 (85%) patients. D30N persisted less frequently than L90M (50% versus 100%, respectively; P < 0.001) and V82A/F/T (50% versus 81%, respectively; P = 0.05). HIV-1 isolates from 38 (49%) patients failing PI salvage therapy developed new primary PI resistance mutations including L90M, I84V, V82A, and G48V. Common combinations of primary and secondary PI resistance mutations after salvage therapy included mutations at amino acid positions 10, 82, and 46 and/or 54 in 16 patients; 10, 90, and 71 and/or 73 in 14 patients; 10, 73, 84, 90, and 46 and/or 54 in 5 patients; 10, 48, and 82 in 5 patients; and 30, 88 and 90 in 5 patients. In summary, during salvage PI therapy, most HIV-1 isolates with a single primary PI resistance mutation maintained their original mutations, and 49% developed additional primary PI resistance mutations. The persistence of L90M, V82A/F/T, G48V, and I84V during salvage therapy suggests that these mutations play a role in clinical resistance to multiple PIs

    N88D facilitates the co-occurrence of D30N and L90M and the development of multidrug resistance in HIV type 1 protease following nelfinavir treatment failure

    No full text
    Nelfinavir was once one of the most commonly used protease inhibitors (PIs). To investigate the genetic mechanisms of multidrug resistance in protease isolates with the primary nelfinavir resistance mutation D30N, we analyzed patterns of protease mutations in 582 viruses with D30N from 460 persons undergoing HIV-1 genotypic resistance testing at Stanford University Hospital from 1997 to 2005. Three patterns of mutational associations were identified. First, D30N was positively associated with N88D but negatively associated with N88S. Second, D30N and L90M were negatively associated except in the presence of N88D, which facilitated the co-occurrence of D30N and L90M. Third, D30N+N88D+L90M formed a stable genetic backbone for the accumulation of additional protease inhibitor (PI) resistance mutations. In 16 patients having isolates with more than one combination of mutations at positions 30, 88, and 90, all exhibited one of the steps in the following progression: D30N--\u3eD30N+N88D--\u3eD30N+N88D+L90M--\u3eD30N+N88D+L90M+(L33F+/-I84V or M46I/L+/-I54V). Although nelfinavir is now used less frequently than other PIs, the well-delineated mutational pathway we describe is likely to influence patterns of cross-resistance in viruses from persons who experience virologic failure while receiving this PI
    corecore