14,333 research outputs found

    Using a cognitive prosthesis to assist foodservice managerial decision-making

    Get PDF
    The artificial intelligence community has been notably unsuccessful in producing intelligent agents that think for themselves. However, there is an obvious need for increased information processing power in real life situations. An example of this can be witnessed in the training of a foodservice manager, who is expected to solve a wide variety of complex problems on a daily basis. This article explores the possibility of creating an intelligence aid, rather than an intelligence agent, to assist novice foodservice managers in making decisions that are congruent with a subject matter expert\u27s decision schema

    Constraining the dark fluid

    Get PDF
    Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating in particular that the data cannot be fit by a dark fluid with a single constant equation of state. Parameterizing the dark fluid equation of state by a variety of polynomials in the scale factor aa, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.Comment: 5 pages, 5 figures incorporated. Updated to new observational data including SHOES determination of H0; new citations adde

    Unified dark energy and dark matter from a scalar field different from quintessence

    Get PDF
    We explore unification of dark matter and dark energy in a theory containing a scalar field of non-Lagrangian type, obtained by direct insertion of a kinetic term into the energy-momentum tensor. This scalar is different from quintessence, having an equation of state between -1 and 0 and a zero sound speed in its rest frame. We solve the equations of motion for an exponential potential via a rewriting as an autonomous system, and demonstrate the observational viability of the scenario, for sufficiently small exponential potential parameter \lambda, by comparison to a compilation of kinematical cosmological data.Comment: 10 pages RevTeX4 with 5 figures incorporate

    Reconstructing thawing quintessence with multiple datasets

    Full text link
    In this work we model the quintessence potential in a Taylor series expansion, up to second order, around the present-day value of the scalar field. The field is evolved in a thawing regime assuming zero initial velocity. We use the latest data from the Planck satellite, baryonic acoustic oscillations observations from the Sloan Digital Sky Survey, and Supernovae luminosity distance information from Union2.1 to constrain our models parameters, and also include perturbation growth data from the WiggleZ, BOSS and the 6dF surveys. The supernova data provide the strongest individual constraint on the potential parameters. We show that the growth data performance is competitive with the other datasets in constraining the dark energy parameters we introduce. We also conclude that the combined constraints we obtain for our model parameters, when compared to previous works of nearly a decade ago, have shown only modest improvement, even with new growth of structure data added to previously-existent types of data.Comment: 9 pages, 4 figures and 1 table. Version 2 with minor changes to match Physical Review D accepted versio

    Cold dark matter models with high baryon content

    Get PDF
    Recent results have suggested that the density of baryons in the Universe, OmegaB, is much more uncertain than previously thought, and may be significantly higher. We demonstrate that a higher OmegaB increases the viability of critical-density cold dark matter (CDM) models. High baryon fraction offers the twin benefits of boosting the first peak in the microwave anisotropy power spectrum and of suppressing short-scale power in the matter power spectrum. These enable viable CDM models to have a larger Hubble constant than otherwise possible. We carry out a general exploration of high OmegaB CDM models, varying the Hubble constant h and the spectral index n. We confront a variety of observational constraints and discuss specific predictions. Although some observational evidence may favour baryon fractions as high as 20 per cent, we find that values around 10 to 15 per cent provide a reasonable fit to a wide range of data. We suggest that models with OmegaB in this range, with h about 0.5 and n about 0.8, are currently the best critical-density CDM models.Comment: 14 pages, LaTeX, with 9 included figures, to appear in MNRAS. Revised version includes updated references, some changes to section 4. Conclusions unchange

    A dark energy view of inflation

    Get PDF
    Traditionally, inflationary models are analyzed in terms of parameters such as the scalar spectral index ns and the tensor to scalar ratio r, while dark energy models are studied in terms of the equation of state parameter w. Motivated by the fact that both deal with periods of accelerated expansion, we study the evolution of w during inflation, in order to derive observational constraints on its value during an earlier epoch likely dominated by a dynamic form of dark energy. We find that the cosmic microwave background and large-scale structure data is consistent with w_inflation=-1 and provides an upper limit of 1+w <~ 0.02. Nonetheless, an exact de Sitter expansion with a constant w=-1 is disfavored since this would result in ns=1.Comment: 5 pages, 4 figures; v2: minor modifications to match published versio

    Mixed mode oscillations in a conceptual climate model

    Get PDF
    Much work has been done on relaxation oscillations and other simple oscillators in conceptual climate models. However, the oscillatory patterns in climate data are often more complicated than what can be described by such mechanisms. This paper examines complex oscillatory behavior in climate data through the lens of mixed-mode oscillations. As a case study, a conceptual climate model with governing equations for global mean temperature, atmospheric carbon, and oceanic carbon is analyzed. The nondimensionalized model is a fast/slow system with one fast variable (corresponding to ice volume) and two slow variables (corresponding to the two carbon stores). Geometric singular perturbation theory is used to demonstrate the existence of a folded node singularity. A parameter regime is found in which (singular) trajectories that pass through the folded node are returned to the singular funnel in the limiting case where ϵ=0\epsilon = 0. In this parameter regime, the model has a stable periodic orbit of type 1s1^s for some s>0s>0. To our knowledge, it is the first conceptual climate model demonstrated to have the capability to produce an MMO pattern.Comment: 28 pages, 11 figure
    • …
    corecore