3,177 research outputs found

    Livestock Farming Systems in the Northern Tablelands of NSW: An Economic Analysis

    Get PDF
    The Northern Tablelands region of New South Wales covers an area of approximately 3.12 million hectares including 2.11 million hectares occupied by some 2300 agricultural establishments producing agricultural commodities valued at more than 220million.Sheepandwoolproductionandcattleproductionarethedominantagriculturalenterprises.InthisReport,awhole−farmmodelofarepresentativelivestockfarmingsystemintheNorthernTablelandsisdeveloped.Whole−farmeconomicmodelsoftherelevantfarmingsystemareausefulfirststepinunderstandingthenatureofthebiologicalandeconomicconstraintsfacingproducersintheirdecisionmakinginrelationtotheirchoicesofinputsandoutputs.Suchmodelsarealsousefulinrelationtomoregeneralconcernssuchastheexpectedimpactsofinvestmentsinnewtechnologiesapplicabletograzingsystems,orofexternaleventssuchasdroughtconditionsoradepreciationintheexchangerate.Awholefarmbudgetforarepresentativefarmincludesastatementofassetsandliabilities,baseduponestimatesofthevariouscapitalitemsincludingland,livestockandplantandmachineryandfarmstructures.Thereisalsoanannualoperatingbudgetthatincludesthecashincomeandcostsassociatedwitheachofthefarmenterprisesaswellasthefixedcostsincurredforrunningthefarmovertheyeartoderivethefarmcashincome.Allowancesfordepreciationandinterestcostsaredeductedfromfarmcashincometodeterminefarmoperatingsurplus.Nofamilylaborallowanceissubtracted,sotheresultingfarmoperatingsurplusrepresentsareturnonowner−operatedlabor,managementandfarmassets.Pasturecostsarenotapportionedtothespecificanimalenterprisesandthereforeappearasseparatenegativegrossmargins.Similarly,supplementaryfeedingcostsandfodderconservationactivitiesarelistedasaseparatenegativegrossmargin.ArepresentativefarmmodeloftheNorthernTablelandslivestockfarmingsystemwasdevelopedbasedonABSandABAREdataontherelevantindustries,fromsimulationswithalinearprogrammingmodel,andfromdiscussionswithlocalgraziersandextensionofficers.Thefarmcomprises920haofwhichabouthalfisnativepastureandabouthalfisintroducedpasture.Thisfarmrunsaflockof1,108first−crossewes,aflockof1,732Merinowethersanda127cowherdproducing18montholdsteerssuitablefortheheavyfeedersteermarket.Usingaveragepricesandcostsoveranextendedperiodoftime,theannualoperatingbudgetforthefarmshowsatotalgrossmarginof220 million. Sheep and wool production and cattle production are the dominant agricultural enterprises. In this Report, a whole-farm model of a representative livestock farming system in the Northern Tablelands is developed. Whole-farm economic models of the relevant farming system are a useful first step in understanding the nature of the biological and economic constraints facing producers in their decision making in relation to their choices of inputs and outputs. Such models are also useful in relation to more general concerns such as the expected impacts of investments in new technologies applicable to grazing systems, or of external events such as drought conditions or a depreciation in the exchange rate. A whole farm budget for a representative farm includes a statement of assets and liabilities, based upon estimates of the various capital items including land, livestock and plant and machinery and farm structures. There is also an annual operating budget that includes the cash income and costs associated with each of the farm enterprises as well as the fixed costs incurred for running the farm over the year to derive the farm cash income. Allowances for depreciation and interest costs are deducted from farm cash income to determine farm operating surplus. No family labor allowance is subtracted, so the resulting farm operating surplus represents a return on owner-operated labor, management and farm assets. Pasture costs are not apportioned to the specific animal enterprises and therefore appear as separate negative gross margins. Similarly, supplementary feeding costs and fodder conservation activities are listed as a separate negative gross margin. A representative farm model of the Northern Tablelands livestock farming system was developed based on ABS and ABARE data on the relevant industries, from simulations with a linear programming model, and from discussions with local graziers and extension officers. The farm comprises 920 ha of which about half is native pasture and about half is introduced pasture. This farm runs a flock of 1,108 first-cross ewes, a flock of 1,732 Merino wethers and a 127 cow herd producing 18 month old steers suitable for the heavy feeder steer market. Using average prices and costs over an extended period of time, the annual operating budget for the farm shows a total gross margin of 86,191 and total overhead costs for the year of 24,720.Thisresultsinafarmcashincomeof24,720. This results in a farm cash income of 61,471 and a farm operating surplus of 37,471afterdepreciationandinterestcosts.Thestatementofassetsandliabilitiesshowstotalassetsofthefarmtobe37,471 after depreciation and interest costs. The statement of assets and liabilities shows total assets of the farm to be 1,498,060 and liabilities of 100,000whichequatestoanequitylevelof93.3percent.Thefarmoperatingsurplusachievedonthismodelfarmasapercentageoftheowner′sequityis2.7percent.Thisrepresentsareturnonoperatorandfamilylabor,managementandequity.LowreturnstoequityaretypicalofAustralianbroadacreagriculture.Otherscenariosexaminedincludedwhole−farmbudgetsbasedon2002actualmarketpricesandon2003expectedprices.Giventherelativelyhighpricesforsheeprelativetocattleintheseyears,therepresentativefarmwouldbemoreprofitablerunning1,558first−crossewesand3,595Merinowethers.Suchanenterprisemixwouldachieveafarmtotalgrossmarginof100,000 which equates to an equity level of 93.3 per cent. The farm operating surplus achieved on this model farm as a percentage of the owner's equity is 2.7 per cent. This represents a return on operator and family labor, management and equity. Low returns to equity are typical of Australian broadacre agriculture. Other scenarios examined included whole-farm budgets based on 2002 actual market prices and on 2003 expected prices. Given the relatively high prices for sheep relative to cattle in these years, the representative farm would be more profitable running 1,558 first-cross ewes and 3,595 Merino wethers. Such an enterprise mix would achieve a farm total gross margin of 165,736. After overhead costs, depreciation and interest costs there would be a farm operating surplus of 111,818.Basedonequitytotaling111,818. Based on equity totaling 1,472,870, this operating surplus would represent a business return on operator labor, management and equity of 8.1 per cent. However, while the Northern Tablelands representative farm model would suggest that greater profits could be achieved from changing enterprises as commodity prices change, in practice various biological lags, infrastructure, financial and management constraints prevent regular changes in farm enterprises. In fact, diversification amongst a variety of farm enterprises between various sheep and cattle enterprises as evidenced in the Northern Tablelands is one management response to this commodity price variability. A hypothetical new improved-pasture technology suggested by researchers, involving the selection of pasture varieties with improved winter pasture growth, was examined using the whole-farm model. If the existing 450 ha of improved pasture was replaced by a new variety that gave a 10 per cent increase in winter pasture growth, this would result in a 4.9 per cent increase in farm total gross margin. This corresponds to an increase in farm cash income of 6.9 per cent. These improvements in the profitability of the representative farm would be achieved by increasing the investment in first-cross ewes and in cows producing heavy feeder steers (by 3.5 per cent and 7.8 per cent respectively) and by decreasing the Merino wether enterprise from 1,732 to 1,672 wethers. This indicates that the prime lamb and cow enterprises, under the current assumptions of the model, are better able to utilize the farm resources available given an increase in winter pasture growth. The main conclusions from the analysis are that: Returns to equity are quite low in the Northern Tablelands livestock farming system; variable commodity prices, largely determined in world markets, result in variable levels of profitability of the farming system over time; The optimal farm plan is quite sensitive to small changes in the relative prices of the different outputs produced; In practice farm plans do not change very much as prices change, with most farms maintaining a range of cattle and sheep enterprises; Thus a "representative year" is a more realistic basis for assessing potential changes in farm plans; and new technologies can potentially have large impacts of farm profits and on the mix of resources used and outputs produced.Industrial Organization, Production Economics,

    Coherent electronic transfer in quantum dot systems using adiabatic passage

    Full text link
    We describe a scheme for using an all-electrical, rapid, adiabatic population transfer between two spatially separated dots in a triple-quantum dot system. The electron spends no time in the middle dot and does not change its energy during the transfer process. Although a coherent population transfer method, this scheme may well prove useful in incoherent electronic computation (for example quantum-dot cellular automata) where it may provide a coherent advantage to an otherwise incoherent device. It can also be thought of as a limiting case of type II quantum computing, where sufficient coherence exists for a single gate operation, but not for the preservation of superpositions after the operation. We extend our analysis to the case of many intervening dots and address the issue of transporting quantum information through a multi-dot system.Comment: Replaced with (approximately) the published versio

    Quantum search by measurement

    Get PDF
    We propose a quantum algorithm for solving combinatorial search problems that uses only a sequence of measurements. The algorithm is similar in spirit to quantum computation by adiabatic evolution, in that the goal is to remain in the ground state of a time-varying Hamiltonian. Indeed, we show that the running times of the two algorithms are closely related. We also show how to achieve the quadratic speedup for Grover's unstructured search problem with only two measurements. Finally, we discuss some similarities and differences between the adiabatic and measurement algorithms.Comment: 8 pages, 2 figure

    In vivo interaction between CDKA and eIF4A: a possible mechanism linking translation and cell proliferation

    Get PDF
    AbstractIn a proteomics-based screen for proteins interacting with cyclin-dependent protein kinase (CDK), we have identified a novel CDK complex containing the eukaryotic translation initiation factor, eIF4A. Reciprocal immunoprecipitations using antibodies against eIF4A indicate that the interaction is specific. The CDKA–eIF4A complex is abundant in actively proliferating and growing cells but is absent from cells that have ceased dividing. The CDKA–eIF4A complex contains kinase activity that is sensitive to the CDK-specific inhibitor roscovitine. This interaction points to a possible molecular mechanism linking cell proliferation with translational control

    Robustness of adiabatic quantum computation

    Get PDF
    We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.Comment: 11 pages, 5 figures, REVTe

    Identifying an Experimental Two-State Hamiltonian to Arbitrary Accuracy

    Get PDF
    Precision control of a quantum system requires accurate determination of the effective system Hamiltonian. We develop a method for estimating the Hamiltonian parameters for some unknown two-state system and providing uncertainty bounds on these parameters. This method requires only one measurement basis and the ability to initialise the system in some arbitrary state which is not an eigenstate of the Hamiltonian in question. The scaling of the uncertainty is studied for large numbers of measurements and found to be proportional to one on the square-root of the number of measurements.Comment: Minor corrections, Accepted for publication in Physical Review

    Characterization the Cool KOIs. II. The M Dwarf KOI-254 and its Hot Jupiter

    Get PDF
    We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J – K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M_P = 0.505 M_(Jup), radius R_P = 0.96 R_(Jup), and semimajor axis a = 0.030 AU, based on our measured stellar mass M_* = 0.59 M_☉ and radius R_* = 0.55 R_☉. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets
    • …
    corecore