3,201 research outputs found

    Transformation of the paradigm in intestinal failure: future prognostication and quality of life, not just survival

    Get PDF
    No abstract available

    Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study

    Get PDF
    We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this

    Hotspots for Initiation of Meiotic Recombination.

    Get PDF
    Homologous chromosomes must pair and recombine to ensure faithful chromosome segregation during meiosis, a specialized type of cell division that occurs in sexually reproducing eukaryotes. Meiotic recombination initiates by programmed induction of DNA double-strand breaks (DSBs) by the conserved type II topoisomerase-like enzyme SPO11. A subset of meiotic DSBs are resolved as crossovers, whereby reciprocal exchange of DNA occurs between homologous chromosomes. Importantly, DSBs are non-randomly distributed along eukaryotic chromosomes, forming preferentially in permissive regions known as hotspots. In many species, including plants, DSB hotspots are located within nucleosome-depleted regions. DSB localization is governed by interconnected factors, including cis-regulatory elements, transcription factor binding, and chromatin accessibility, as well as by higher-order chromosome architecture. The spatiotemporal control of DSB formation occurs within a specialized chromosomal structure characterized by sister chromatids organized into linear arrays of chromatin loops that are anchored to a proteinaceous axis. Although SPO11 and its partner proteins required for DSB formation are bound to the axis, DSBs occur preferentially within the chromatin loops, which supports the "tethered-loop/axis model" for meiotic recombination. In this mini review, we discuss insights gained from recent efforts to define and profile DSB hotspots at high resolution in eukaryotic genomes. These advances are deepening our understanding of how meiotic recombination shapes genetic diversity and genome evolution in diverse species

    Synthesis of neutral nickel catalysts for ethylene polymerization – the influence of ligand size on catalyst stability

    Get PDF
    A facile synthesis of nickel salicylaldimine complexes with labile dissociating ligands is described. In addition to producing highly active ethylene polymerization catalysts, important insights into the effect of ligand size on catalyst stability and information on the mechanism of polymerization are provided

    Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset

    Get PDF
    We report on our efforts building a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The dataset is made up of Git commits from open-source projects with old and new versions of definitions and proofs aligned across commits. Building this dataset has been a significant undertaking, highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges and gaps, and we provide recommendations for how the proof assistant community can address them. Our hope is to make it easier to build datasets and benchmark suites so that machine-learning tools for proofs will move to target the tasks that matter most and do so equitably across proof assistants

    The need for embedding learning in healthcare projects

    Get PDF
    Service delivery in the healthcare sector is ultimately affected by the built infrastructure provided to support it. In order for a hospital environment to function optimally, there is a need to investigate how a learning culture can be nurtured within the design, construction and occupancy of healthcare facilities so that its effect on the healing process of patients can be managed. A large focus of attention currently within the research domain concerning knowledge management and organisational learning within construction is centred on learning from buildings in use and post occupancy evaluation (POE). Interestingly, however, there has been little focus on capturing lessons learnt from the construction phase of projects and even less on how these lessons can be fed back to form inputs into the design stage of future projects. Particular opportunities lie in capturing `lessons learnt' from projects in relation to the build quality of the final product. This could be particularly important in informing the future buildability of healthcare projects. The aim of this research is to examine how lessons learnt arising from specifically the construction phase of healthcare infrastructure projects can be captured and fed back to designers in particular and in some cases the client. This is in order to create a learning culture and help improve the quality of future healthcare facilities/infrastructure. This paper reports on a critical synthesis of the organisational learning literature, primarily focusing on identifying the potential benefits for embedding such a learning culture in project-based environments specifically concentrated within a healthcare infrastructure context. Through this literature synthesis a significant case for improving project-based organisational learning within healthcare infrastructure is provided and recommendations for the need for further empirical investigation are made

    Hotspots for Initiation of Meiotic Recombination

    Get PDF
    Homologous chromosomes must pair and recombine to ensure faithful chromosome segregation during meiosis, a specialized type of cell division that occurs in sexually reproducing eukaryotes. Meiotic recombination initiates by programmed induction of DNA double-strand breaks (DSBs) by the conserved type II topoisomerase-like enzyme SPO11. A subset of meiotic DSBs are resolved as crossovers, whereby reciprocal exchange of DNA occurs between homologous chromosomes. Importantly, DSBs are non-randomly distributed along eukaryotic chromosomes, forming preferentially in permissive regions known as hotspots. In many species, including plants, DSB hotspots are located within nucleosome-depleted regions. DSB localization is governed by interconnected factors, including cis-regulatory elements, transcription factor binding, and chromatin accessibility, as well as by higher-order chromosome architecture. The spatiotemporal control of DSB formation occurs within a specialized chromosomal structure characterized by sister chromatids organized into linear arrays of chromatin loops that are anchored to a proteinaceous axis. Although SPO11 and its partner proteins required for DSB formation are bound to the axis, DSBs occur preferentially within the chromatin loops, which supports the “tethered-loop/axis model” for meiotic recombination. In this mini review, we discuss insights gained from recent efforts to define and profile DSB hotspots at high resolution in eukaryotic genomes. These advances are deepening our understanding of how meiotic recombination shapes genetic diversity and genome evolution in diverse species

    Combined fluorescence lifetime and surface topographical imaging of biological tissue

    Get PDF
    In this work a combined fluorescence lifetime and surface topographical imaging system is demonstrated. Based around a 126 × 192 time resolved single photon avalanche diode (SPAD) array operating in time correlated single-photon counting (TCSPC) mode, both the fluorescence lifetime and time of flight (ToF) can be calculated on a pixel by pixel basis. Initial tests on fluorescent samples show it is able to provide 4 mm resolution in distance and 0.4 ns resolution in lifetime. This combined modality has potential biomedical applications such as surgical guidance, endoscopy and diagnostic imaging. The system is demonstrated on both ovine and human pulmonary tissue samples, where it offers excellent fluorescence lifetime contrast whilst also giving a measure of the distance to the sample surfac
    corecore