350 research outputs found
Effect of hydrogen on the strength and microstructure of selected ceramics
Ceramics in monolithic form and as composite constituents in the form of fibers, matrices, and coatings are currently being considered for a variety of high-temperature applications in aeronautics and space. Many of these applications involve exposure to a hydrogen-containing environment. The compatibility of selected ceramics in gaseous high-temperature hydrogen is assessed. Environmental stability regimes for the long term use of ceramic materials are defined by the parameters of temperature, pressure, and moisture content. Thermodynamically predicted reactions between hydrogen and several monolithic ceramics are compared with actual performance in a controlled environment. Morphology of hydrogen attack and the corresponding strength degradation is reported for silicon carbide, silicon nitride, alumina, magnesia, and mullite
AdS Strings with Torsion: Non-complex Heterotic Compactifications
Combining the effects of fluxes and gaugino condensation in heterotic
supergravity, we use a ten-dimensional approach to find a new class of
four-dimensional supersymmetric AdS compactifications on almost-Hermitian
manifolds of SU(3) structure. Computation of the torsion allows a
classification of the internal geometry, which for a particular combination of
fluxes and condensate, is nearly Kahler. We argue that all moduli are fixed,
and we show that the Kahler potential and superpotential proposed in the
literature yield the correct AdS radius. In the nearly Kahler case, we are able
to solve the H Bianchi using a nonstandard embedding. Finally, we point out
subtleties in deriving the effective superpotential and understanding the
heterotic supergravity in the presence of a gaugino condensate.Comment: 42 pages; v2. added refs, revised discussion of Bianchi for N
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network?
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs
Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin\u27s effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin
Superconformal Multi-Black Hole Moduli Spaces in Four Dimensions
Quantum mechanics on the moduli space of N supersymmetric Reissner-Nordstrom
black holes is shown to admit 4 supersymmetries using an unconventional
supermultiplet which contains 3N bosons and 4N fermions. A near-horizon limit
is found in which the quantum mechanics of widely separated black holes
decouples from that of strongly-interacting, near-coincident black holes. This
near-horizon theory is shown to have an enhanced D(2,1;0) superconformal
symmetry. The bosonic symmetries are SL(2,R) conformal symmetry and SU(2)xSU(2)
R-symmetry arising from spatial rotations and the R-symmetry of N=2
supergravity.Comment: 23 pages, harvmac. v2: many typos fixe
Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation
Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed
Microstructure versus Size: Mechanical Properties of Electroplated Single Crystalline Cu Nanopillars
- …