3,490 research outputs found

    Mapping suitability for open-loop ground source heat pump systems: a screening tool for England and Wales, UK

    Get PDF
    The UK Government expects that, by 2020, 12% of the UK’s heat demand will come from renewable sources, and is providing incentives to help achieve this. Open-loop ground source heat pumps (GSHP) could make a substantial contribution. A web-based screening tool has been developed that highlights areas where conditions may be suitable for installing commercial-scale (>100 kW heating or cooling demand) open-loop GSHP systems in England and Wales. In addition to the basic requirements for open-loop GSHP (i.e. the availability of a sufficiently productive aquifer within a reasonable depth beneath the surface) the tool provides information on existing abstractions, water chemistry and the location of protected areas. Validation and tool application show that it produces reliable results and provides an effective method for the initial assessment of subsurface conditions and suitability for GSHP installations. Hence, the tool can help to reduce uncertainty at the early planning stage, and also to promote GSHP technology to a variety of audiences

    Cellular delivery of antibodies: effective targeted subcellular imaging and new therapeutic tool

    Get PDF
    It is already more than a century since the pioneering work of the Nobel Laureate Ehrlich gave birth to the side chain theory1, which helped to define antibodies and their ability to target specific biological sites. However, the use of antibodies is still restricted to the extracellular space due to the lack of a suitable delivery vehicle for the efficient transport of antibodies into live cells without inducing toxicity. In this work, we report the efficient encapsulation and delivery of antibodies into live cells with no significant loss of cell viability or any deleterious affect on the cell metabolic activity. This delivery system is based on poly(2-(methacryloyloxy)ethyl phosphorylcholine)-block-(2-(diisopropylamino)ethyl methacrylate), (PMPC-PDPA), a pH sensitive diblock copolymer that self-assembles to form nanometer-sized vesicles, also known as polymersomes, at physiological pH. These polymersomes can successfully deliver relatively high antibody payloads within live cells. Once inside the cells, we demonstrate that these antibodies can target their epitope by immune-labelling of cytoskeleton, Golgi, and transcription factor proteins in live cells. We also demonstrate that this effective antibody delivery mechanism can be used to control specific subcellular events, as well as modulate cell activity and pro-inflammatory process

    Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover.

    Get PDF
    Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics

    A new generation of smart amine donors for transaminase-mediated biotransformations

    Get PDF
    The application of ω-transaminase biocatalysts for the synthesis of optically pure chiral amines presents a number of challenges, including difficulties associated with displacing the challenging reaction equilibria. Herein, we report a highly effective approach using low equivalents of the novel diamine donor, cadaverine, which enables high conversions of challenging substrates to the corresponding chiral amines in excellent ee. This approach paves the way for the design of self-sufficient fermentation processes combining transaminase biotransformations with existing strategies for cadaverine production via decarboxylation of endogenous lysine

    Bostonia: The Boston University Alumni Magazine. Volume 33

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    • …
    corecore