6 research outputs found

    Defining Plasma Polymerization: New Insight Into What We Should Be Measuring

    No full text
    External parameters (RF power and precursor flow rate) are typically quoted to define plasma polymerization experiments. Utilizing a parallel-plate electrode reactor with variable geometry, it is shown that these parameters cannot be transferred to reactors with different geometries in order to reproduce plasma polymer films using four precursors. Measurements of ion flux and power coupling efficiency confirm that intrinsic plasma properties vary greatly with reactor geometry at constant applied RF power. It is further demonstrated that controlling intrinsic parameters, in this case the ion flux, offers a more widely applicable method of defining plasma polymerization processes, particularly for saturated and allylic precursors

    Facile Fabrication of Graphene Membranes with Readily Tunable Structures

    No full text
    Advanced membranes that combine mechanical robustness with fast permeation are crucial to many applications such as water purification, ions selectivity, and gas separation. Graphene sheets offer a promising opportunity to fabricate thin, high-flux, and pressure-endurable membranes because of their unique 2D morphology, oxidizable surface, and electrical conductivity. We herein report a highly effective yet simple approach to the fabrication of graphene membranes featuring controllable oxidation degrees and thus tunable structures and properties. The graphene sheets comprise a single or a few layers with a lateral dimension of 50–100 nm; their C/O ratios can be manipulated from 4.1 for graphene with a low degree of oxidation (low-oxidation graphene) to 2.5 for medium-oxidation graphene to 1.3 for high-oxidation graphene, by controlling the proportion of phosphoric acid during the 60 min fabrication. Fabricated by simple vacuum filtration, the membranes exhibited various water flux from 200.0 to 20.0 L/m<sup>2</sup>·h·bar at 3 bar of pressure and mechanical robustness (Young’s modulus can be up to 20 GPa and tensile strength to 100 MPa). When these membranes were used as electrodes for supercapacitors, specific capacitances of 58.8 F/g and 23.5 F/cm<sup>3</sup> were recorded for the low-oxidation graphene membrane at 1 A/g by a two-electrode configuration; the capacity values retained ∼95% after 800 cycles; the high capacitance would be caused by moderate wettability and high electrical conductivity

    On the Effect of Monomer Chemistry on Growth Mechanisms of Nonfouling PEG-like Plasma Polymers

    No full text
    It has been shown that both ions and neutral species may contribute to plasma polymer growth. However, the relative contribution from these mechanisms remains unclear. We present data elucidating the importance of considering monomer structure with respect to which the growth mechanism dominates for nonfouling PEG-like plasma polymers. The deposition rate for saturated monomers is directly linked with ion flux to the substrate. For unsaturated monomers, the neutral flux also plays a role, particularly at low power. Increased fragmentation of the monomer at high power reduces the ability of unsaturated monomers to grow via neutral grafting. Chemical characterization by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirm the role that plasma phase fragmentation plays in determining the deposition rate and surface chemistry of the deposited film. The simple experimental method used here may also be used to determine which mechanisms dominate plasma deposition for other monomers. This knowledge may enable significant improvement in future reactor design and process control

    Single-Step Assembly of Multifunctional Poly(tannic acid)–Graphene Oxide Coating To Reduce Biofouling of Forward Osmosis Membranes

    No full text
    Graphene oxide (GO) nanosheets have antibacterial properties that have been exploited as a biocidal agent used on desalination membrane surfaces in recent research. Nonetheless, improved strategies for efficient and stable attachment of GO nanosheets onto the membrane surface are still required for this idea to be commercially viable. To address this challenge, we adopted a novel, single-step surface modification approach using tannic acid cross-linked with polyethylene imine as a versatile platform to immobilize GO nanosheets to the surface of polyamide thin film composite forward osmosis (FO) membranes. An experimental design based on Taguchi’s statistical method was applied to optimize the FO processing conditions in terms of water and reverse solute fluxes. Modified membranes were analyzed using water contact angle, adenosine triphosphate bioluminescence, total organic carbon, Fourier transform infrared spectroscopy, ζ potential, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. These results show that membranes were modified with a nanoscale (<10 nm), smooth, hydrophilic coating that, compared to pristine membranes, improved filtration and significantly mitigated biofouling by 33% due to its extraordinary, synergistic antibacterial properties (99.9%)

    Development of Advanced Dressings for the Delivery of Progenitor Cells

    No full text
    Culture surfaces that substantially reduce the degree of cell manipulation in the delivery of cell sheets to patients are described. These surfaces support the attachment, culture, and delivery of multipotent adult progenitor cells (MAPC). It was essential that the processes of attachment/detachment to the surface did not affect cell phenotype nor the function of the cultured cells. Both acid-based and amine-based surface coatings were generated from acrylic acid, propanoic acid, diaminopropane, and heptylamine precursors, respectively. While both functional groups supported cell attachment/detachment, amine coated surfaces gave optimal performance. X-ray photoelectron spectroscopy (XPS) showed that at a primary amine to carbon surface ratio of between 0.01 and 0.02, greater than 90% of attached cells were effectively transferred to a model wound bed. A dependence on primary amine concentration has not previously been reported. After 48 h of culture on the optimized amine surface, PCR, functional, and viability assays showed that MAPC retained their stem cell phenotype, full metabolic activity, and biological function. Consequently, in a proof of concept experiment, it was shown that this amine surface when coated onto a surgical dressing provides an effective and simple technology for the delivery of MAPC to murine dorsal excisional wounds, with MAPC delivery verified histologically. By optimizing for cell delivery using a combination of in vitro and in vivo techniques, we developed an effective surface for the delivery of MAPC in a clinically relevant format
    corecore