10 research outputs found

    Oldest Known Eucalyptus Macrofossils Are from South America

    Get PDF
    The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake

    A distributed, visual object environment using stages

    No full text

    Advantages of a component-based approach to defining complicated objects

    No full text

    Can we use machine learning to improve the interpretation and application of urodynamic data?: ICI-RS 2023

    No full text
    Introduction: A “Think Tank” at the International Consultation on Incontinence-Research Society meeting held in Bristol, United Kingdom in June 2023 considered the progress and promise of machine learning (ML) applied to urodynamic data. Methods: Examples of the use of ML applied to data from uroflowmetry, pressure flow studies and imaging were presented. The advantages and limitations of ML were considered. Recommendations made during the subsequent debate for research studies were recorded. Results: ML analysis holds great promise for the kind of data generated in urodynamic studies. To date, ML techniques have not yet achieved sufficient accuracy for routine diagnostic application. Potential approaches that can improve the use of ML were agreed and research questions were proposed. Conclusions: ML is well suited to the analysis of urodynamic data, but results to date have not achieved clinical utility. It is considered likely that further research can improve the analysis of the large, multifactorial data sets generated by urodynamic clinics, and improve to some extent data pattern recognition that is currently subject to observer error and artefactual noise
    corecore