6 research outputs found

    U–O<sub>yl</sub> Stretching Vibrations as a Quantitative Measure of the Equatorial Bond Covalency in Uranyl Complexes: A Quantum-Chemical Investigation

    No full text
    The molecular structures of a series of uranyl (UO<sub>2</sub><sup>2+</sup>) complexes in which the uranium center is equatorially coordinated by a first-row species are calculated at the density functional theory level and binding energies deduced. The resulting electronic structures are investigated using a variety of density-based analysis techniques in order to quantify the degree of covalency in the equatorial bonds. It is shown that a consideration of the properties of both the one-electron and electron-pair densities is required to understand and rationalize the variation in axial bonding effected by equatorial complexation. Strong correlations are found between density-based measures of the covalency and equatorial binding energies, implying a stabilizing effect due to covalent interaction, and it is proposed that uranyl U–O<sub>yl</sub> stretching vibrational frequencies can serve as an experimental probe of equatorial covalency

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Dithio- and Diselenophosphinate Thorium(IV) and Uranium(IV) Complexes: Molecular and Electronic Structures, Spectroscopy, and Transmetalation Reactivity

    No full text
    We report a comparison of the molecular and electronic structures of dithio- and diselenophosphinate, (E<sub>2</sub>PR<sub>2</sub>)<sup>1–</sup> (E = S, Se; R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu), with thorium­(IV) and uranium­(IV) complexes. For the thorium dithiophosphinate complexes, reaction of ThCl<sub>4</sub>(DME)<sub>2</sub> with 4 equiv of KS<sub>2</sub>PR<sub>2</sub> (R = <sup><i>i</i></sup>Pr, <sup><i>t</i></sup>Bu) produced the homoleptic complexes, Th­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1S-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). The diselenophosphinate complexes were synthesized in a similar manner using KSe<sub>2</sub>PR<sub>2</sub> to produce Th­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-Th-</b><sup><i><b>i</b></i></sup><b>Pr</b>) and Th­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-Th-</b><sup><i><b>t</b></i></sup><b>Bu</b>). U­(S<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub>, <b>1S-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>, could be made directly from UCl<sub>4</sub> and 4 equiv of KS<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>. With (Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sup>1–</sup>, using UCl<sub>4</sub> and 3 or 4 equiv of KSe<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub> yielded the monochloride product U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Cl (<b>3Se-U</b><sup><i><b>i</b></i><b>Pr</b></sup><b>-Cl</b>), but using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> produced the homoleptic U­(Se<sub>2</sub>P<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>4</sub> (<b>1Se-U-</b><sup><i><b>i</b></i></sup><b>Pr</b>). Similarly, the reaction of UCl<sub>4</sub> with 4 equiv of KS<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> yielded U­(S<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2S-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>), whereas the reaction with KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> resulted in the formation of U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>). Using UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> and 4 equiv of KSe<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub> with UCl<sub>4</sub> in acetonitrile yielded U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>4</sub> (<b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Transmetalation reactions were investigated with complex <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> and various CuX (X = Br, I) salts to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>X (<b>6Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Br</b> and <b>7Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-I</b>) and 0.25 equiv of [Cu­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)]<sub>4</sub> (<b>8Se-Cu-</b><sup><i><b>t</b></i></sup><b>Bu</b>). Additionally, <b>2Se-U-</b><sup><i><b>t</b></i></sup><b>Bu</b> underwent transmetalation reactions with Hg<sub>2</sub>F<sub>2</sub> and ZnCl<sub>2</sub> to yield U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>F (<b>6</b>) and U­(Se<sub>2</sub>P<sup><i>t</i></sup>Bu<sub>2</sub>)<sub>3</sub>Cl (<b>4Se-U</b><sup><b><i>t</i>Bu</b></sup><b>-Cl</b>), respectively. The molecular structures were analyzed using <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>77</sup>Se NMR and IR spectroscopy and structurally characterized using X-ray crystallography. Using the QTAIM approach, the electronic structure of all homoleptic complexes was probed, showing slightly more covalent bonding character in actinide–selenium bonds over actinide–sulfur bonds

    Water Adsorption on AnO<sub>2</sub> {111}, {110}, and {100} Surfaces (An = U and Pu): A Density Functional Theory + <i>U</i> Study

    No full text
    The interactions between water and the actinide oxides UO<sub>2</sub> and PuO<sub>2</sub> are important both fundamentally and when considering the long-term storage of spent nuclear fuel. However, experimental studies in this area are severely limited by the intense radioactivity of plutonium, and hence, we have recently begun to investigate these interactions computationally. In this paper, we report the results of plane-wave density functional theory calculations of the interaction of water with the {111}, {110}, and {100} surfaces of UO<sub>2</sub> and PuO<sub>2</sub>, using a Hubbard-corrected potential (PBE + <i>U</i>) approach to account for the strongly correlated 5f electrons. We find a mix of molecular and dissociative water adsorption to be most stable on the {111} surface, whereas the fully dissociative water adsorption is most stable on the {110} and {100} surfaces, leading to a fully hydroxylated monolayer. From these results, we derive water desorption temperatures at various pressures for the different surfaces. These increase in the order {111} < {110} < {100}, and these data are used to propose an alternative interpretation for the two experimentally determined temperature ranges for water desorption from PuO<sub>2</sub>
    corecore