1,857 research outputs found

    Love thy neighbour, by allowing access for repairs

    Get PDF

    Commonhold reform:A Scottish perspective

    Get PDF

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Semi-automated detection of eagle nests: an application of very high-resolution image data and advanced image analyses to wildlife surveys

    Get PDF
    Very high-resolution (VHR) image data, including from unmanned aerial vehicle (UAV) platforms, are increasingly acquired for wildlife surveys. Animals or structures they build (e.g. nests) can be photointerpreted from these images, however, automated detection is required for more efficient surveys. We developed semi-automated analyses to map white-bellied sea eagle (Haliaeetus leucogaster) nests in VHR aerial photographs of the Houtman Abrolhos Islands, Western Australia, an important breeding site for many seabird species. Nest detection is complicated by high environmental heterogeneity at the scale of nests (~1–2 m), the presence of many features that resemble nests and the variability of nest size, shape and context. Finally, the rarity of nests limits the availability of training data. These challenges are not unique to wildlife surveys and we show how they can be overcome by an innovative integration of object-based image analyses (OBIA) and the powerful machine learning one-class classifier Maxent. Maxent classifications using features characterizing object texture, geometry and neighborhood, along with limited object color information, successfully identified over 90% of high quality nests (most weathered and unusually shaped nests were also detected, but at a slightly lower rate) and labeled <2% of objects as candidate nests. Although this overestimates the occurrence of nests, the results can be visually screened to rule out all but the most likely nests in a process that is simpler and more efficient than manual photointerpretation of the full image. Our study shows that semi-automated image analyses for wildlife surveys are achievable. Furthermore, the developed strategies have broad relevance to image processing applications that seek to detect rare features differing only subtly from a heterogeneous background, including remote sensing of archeological remains. We also highlight solutions to maximize the use of imperfect or uncalibrated image data, such as some UAV-based imagery and the growing body of VHR imagery available in Google Earth and other virtual globes

    Wrapped M2/M5 Duality

    Get PDF
    A microscopic accounting of the entropy of a generic 5D supersymmetric rotating black hole, arising from wrapped M2-branes in Calabi-Yau compactified M-theory, is an outstanding unsolved problem. In this paper we consider an expansion around the zero-entropy, zero-temperature, maximally rotating ground state for which the angular momentum J_L and graviphoton charge Q are related by J_L^2=Q^3. At J_L=0 the near horizon geometry is AdS_2 x S^3. As J_L^2 goes to Q^3 it becomes a singular quotient of AdS_3 x S^2: more precisely, a quotient of the near horizon geometry of an M5 wrapped on a 4-cycle whose self-intersection is the 2-cycle associated to the wrapped-M2 black hole. The singularity of the AdS_3 quotient is identified as the usual one associated to the zero-temperature limit, suggesting that the (0,4) wrapped-M5 CFT is dual near maximality to the wrapped-M2 black hole. As evidence for this, the microscopic (0,4) CFT entropy and the macroscopic rotating black hole entropy are found to agree to leading order away from maximality.Comment: 10 pages, no figure

    Counting Dyons in N=8 String Theory

    Full text link
    A recently discovered relation between 4D and 5D black holes is used to derive exact (weighted) BPS black hole degeneracies for 4D N=8 string theory from the exactly known 5D degeneracies. A direct 4D microscopic derivation in terms of weighted 4D D-brane bound state degeneracies is sketched and found to agree.Comment: 10 page

    Superconformal Black Hole Quantum Mechanics

    Full text link
    In recent work, the superconformal quantum mechanics describing D0 branes in the AdS_2xS^2xCY_3 attractor geometry of a Calabi-Yau black hole with D4 brane charges p^A has been constructed and found to contain a large degeneracy of chiral primary bound states. In this paper it is shown that the asymptotic growth of chiral primaries for N D0 branes exactly matches the Bekenstein-Hawking area law for a black hole with D4 brane charge p^A and D0 brane charge N. This large degeneracy arises from D0 branes in lowest Landau levels which tile the CY_3xS^2 horizon. It is conjectured that such a multi-D0 brane CFT1 is holographically dual to IIA string theory on AdS_2xS^2xCY_3.Comment: 8 page

    R^2 Corrections for 5D Black Holes and Rings

    Full text link
    We study higher-order corrections to two BPS solutions of 5D supergravity, namely the supersymmetric black ring and the spinning black hole. Due in part to our current relatively limited understanding of F-type terms in 5D supergravity, the nature of these corrections is less clear than that of their 4D cousins. Effects of certain R2R^2 terms found in Calabi-Yau compactification of M-theory are specifically considered. For the case of the black ring, for which the microscopic origin of the entropy is generally known, the corresponding higher order macroscopic correction to the entropy is found to match a microscopic correction, while for the spinning black hole the corrections are partially matched to those of a 4D D0−D2−D6D0-D2-D6 black hole.Comment: 9 page
    • 

    corecore