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Abstract

Very high-resolution (VHR) image data, including from unmanned aerial vehicle

(UAV) platforms, are increasingly acquired for wildlife surveys. Animals or

structures they build (e.g. nests) can be photointerpreted from these images, how-

ever, automated detection is required for more efficient surveys. We developed

semi-automated analyses to map white-bellied sea eagle (Haliaeetus leucogaster)

nests in VHR aerial photographs of the Houtman Abrolhos Islands, Western Aus-

tralia, an important breeding site for many seabird species. Nest detection is com-

plicated by high environmental heterogeneity at the scale of nests (~1–2 m), the

presence of many features that resemble nests and the variability of nest size,

shape and context. Finally, the rarity of nests limits the availability of training

data. These challenges are not unique to wildlife surveys and we show how they

can be overcome by an innovative integration of object-based image analyses

(OBIA) and the powerful machine learning one-class classifier Maxent. Maxent

classifications using features characterizing object texture, geometry and neigh-

borhood, along with limited object color information, successfully identified over

90% of high quality nests (most weathered and unusually shaped nests were also

detected, but at a slightly lower rate) and labeled <2% of objects as candidate

nests. Although this overestimates the occurrence of nests, the results can be visu-

ally screened to rule out all but the most likely nests in a process that is simpler

and more efficient than manual photointerpretation of the full image. Our study

shows that semi-automated image analyses for wildlife surveys are achievable.

Furthermore, the developed strategies have broad relevance to image processing

applications that seek to detect rare features differing only subtly from a heteroge-

neous background, including remote sensing of archeological remains. We also

highlight solutions to maximize the use of imperfect or uncalibrated image data,

such as some UAV-based imagery and the growing body of VHR imagery avail-

able in Google Earth and other virtual globes.

Introduction

Reliable estimates of population sizes are needed to sup-

port effective conservation and management of wildlife

species. For example, several criteria within the IUCN

Red List of Threatened Species rely on the size and trends

of a species’ global population (IUCN 2001). These esti-

mates may be derived in a variety of ways, including

direct counting of all or a sample of individuals within a

population (e.g. Fuller et al. 1994), mark–recapture mod-

eling (e.g. Meekan et al. 2006; Nicholson et al. 2012) or

genetic analyses (e.g. Shephard et al. 2005a; Funk et al.

2012). For species exhibiting site fidelity during their life

cycle, knowledge of these critical sites can help target

locations for wildlife surveys. For example, population

monitoring can be conducted at known seabird colonies

(e.g. Fuller et al. 1994; Burbidge and Fuller 2004; Surman

and Nicholson 2009) or sage grouse leks (e.g. Monroe

et al. 2016). For species that do not form large aggrega-

tions, managers may track the number of breeding sites

that are active (e.g. malleefowl mounds: Priddel and

Wheeler 2003; bald eagle nests: Sauer et al. 2011; Watts
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et al. 2008; Zwiefelhofer 2007) and evaluate breeding suc-

cess at those sites.

Applications of image data to wildlife
surveys

Remote sensing can support wildlife population surveys

in several ways. First, counts of individual animals are

increasingly made from very high-resolution (VHR) aerial

photography, including imagery captured from unmanned

aerial vehicle (UAV) platforms (e.g. Sard�a-Palomera et al.

2012; Hodgson et al. 2013; Vermeulen et al. 2013; van

Gemert et al. 2015). Although wildlife surveys have tradi-

tionally been conducted via direct observations, manual

surveys are subjective; subject to observer bias, which can

be extreme and unpredictable (Frederick et al. 2003); may

involve hazardous conditions (Grier et al. 1981); or may

be prohibitively expensive. Interpretation of aerial photos

can help overcome some of the challenges of counting

wildlife (Frederick et al. 2003; Trathan 2004), including

improving population estimates, providing a documentary

record and enabling the collection of additional informa-

tion, such as animal spacing (Dolbeer et al. 1997) or ori-

entation (Begall et al. 2008). In general, aerial photo-

based wildlife surveys use manual photointerpretation

(e.g. Anthony et al. 1995; Dolbeer et al. 1997; LaRue et al.

2011), which is time-consuming and remains subjective.

Few objective, automated wildlife survey methods have

been developed from image data, although Pettorelli et al.

(2014) highlight that this is an emerging application for

environmental remote sensing. Several semi-automated

animal counting approaches have been advocated, largely

relying on expert-determined brightness differences

between the animals and their background (Gilmer et al.

1988), with pixels assembled into objects corresponding

to individual animals after thresholding (Bajzak and Piatt

1990; Cunningham et al. 1996; Laliberte and Ripple 2003;

Trathan 2004; Barber-Meyer et al. 2007). Such simple

approaches may limit the capabilities of image-based

wildlife surveys and are in stark contrast with the object-

oriented approaches used to detect individual plants (but

see Groom et al. 2011, 2013; Mejias et al. 2013; Witha-

rana and Lynch 2016; Yang et al. 2014; and Abd-Elrah-

man et al. 2005 for a template matching approach).

Remote sensing can also detect breeding sites, at which

more intensive monitoring may be performed. For exam-

ple, breeding aggregations of penguins are detectable in

satellite image data because their fecal matter stains the

ice and snow (Fretwell and Trathan 2009; Witharana and

Lynch 2016). Nest mounds of malleefowl have received

considerable attention: techniques are under development

to identify mound topography with lidar (Saffer and

Peake 2014) or stereophoto (Thompson et al. 2015) data,

and to evaluate mound activity with thermal imaging

(Benshemesh and Emison 1996). Despite these examples

(and see Butler 2002; Hughes et al. 2011; Puttock et al.

2015; Van Andel et al. 2015), remote detection of struc-

tures constructed by animals, such as nests, is less com-

mon than the detection and counting of animals

themselves. The goal of this study was to develop semi-

automated image processing tools to detect and map sea

eagle nests from aerial photography.

Nest surveys of white-bellied sea eagles in
the Houtman Abrolhos Islands

The white-bellied sea eagle (Haliaeetus leucogaster) is a

charismatic species with cultural significance in Australa-

sia. This species is fairly uniformly distributed around

coastal Australia, and it also breeds at inland water bodies

and offshore islands (Marchant and Higgins 1993; Shep-

hard et al. 2005b). Information on the location of nests is

fundamental for the management and conservation of sea

eagles, including H. leucogaster in Australia and H. leuco-

cephalus (bald eagle) in North America. Databases of nest

locations are required for the monitoring and manage-

ment of H. leucogaster in Tasmania, where it is strongly

impacted by fisheries and forest management practices

(Thurstans 2009a; Wiersma and Richardson 2009), as well

as H. leucocephalus in the United States (Watts and Duerr

2010; Sauer et al. 2011). In addition, as eagles are espe-

cially sensitive to disturbances near their nests, conserva-

tion measures commonly protect buffers surrounding

known nests (Dennis and Lashmar 1996; Dennis et al.

2011).

To date, aerial surveys with manual observers are the

primary means for detecting and monitoring Haliaeetus

nests (especially H. leucocephalus; e.g. Curnutt and

Robertson 1994; Grier et al. 1981; Thurstans 2009b;

Watts and Duerr 2010; Watts et al. 2008; Whitfield et al.

1974; Zwiefelhofer 2007). Eagle nests are large, conspicu-

ous and maintained over a number of years; thus, they

are amenable to aerial detection from surveys conducted

at any time of year. However, there are no published

accounts of attempts to detect and map sea eagle nests

from image data, using either photointerpretation or

image analyses.

We developed tools to detect eagle nests in VHR aerial

photography of the Houtman Abrolhos Islands (HAI),

nearly 200 islands and associated reefs 60 km offshore of

Western Australia (Fig. 1). Islands in the HAI are small

and of low elevation; the largest island has an area of

6.2 km2 and the highest point on the islands is only 14 m

above sea level (Department of Fisheries 2012). The HAI

support nationally and regionally important breeding

populations of seabirds, including the most significant
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breeding habitat for H. leucogaster in the eastern Indian

Ocean (Fuller et al. 1994; Department of Fisheries 2003).

Monitoring seabirds on the HAI with traditional ground-

based surveys is not a trivial job: with few exceptions, the

islands are only accessible by sea and scattered over an

area of 1000 km2, separated by high seas and treacherous

reefs. There are no permanent human residents on the

HAI.

The detection of nests from image data of the HAI is

more challenging than existing image-based approaches to

survey wildlife. Many studies applying image analyses for

wildlife surveys have taken advantage of simple systems

with target species that are visually distinct from a fea-

tureless background (Groom et al. 2011; Trathan 2004;

similarly, archeological remote sensing: Luo et al. 2014).

In contrast, the surface characteristics of the HAI are not

homogenous and many items in the background appear

similar to nests in the aerial imagery, including drab vege-

tation and senescent plant matter. The nests themselves

are heterogeneous and occur in diverse contexts. In con-

trast to elsewhere in the distribution of sea eagles, the

HAI are not wooded, so the nests are constructed on the

ground, on low shrubs or, rarely, within the canopy of

mangroves. The nests may be formed as tall towers

(Fig. 2A) or low matted areas atop seacliffs (Fig. 2B),

occur singly or be surrounded by satellite nests and have

immediate neighborhoods that vary in vegetation struc-

ture. The size and shape of seacliff nests in particular can

vary considerably (Fig. 2B), and inconsistencies in the

image data can contribute artifactual differences between

nests on different islands. Finally, although sea eagles

occur at higher densities on the HAI than on the main-

land, few nests are available to train a classifier and they

are spread across islands with different environmental

characteristics and image acquisition conditions.

Given these challenges, it was necessary to develop a

general nest detection algorithm that was robust to small

sample sizes and variation in both nest characteristics and

image acquisition parameters. The approach described

here is likely to be relevant for any application to detect

rare features that differ only subtly from a heterogeneous

background, including wildlife surveys and detection of

archeological remains (Luo et al. 2014; Lasaponara et al.

2016), or for rigorous analyses of uncalibrated image

data, such as that available in Google Earth and other vir-

tual globes (Johansen et al. 2008; Yu and Gong 2012).

Materials and Methods

Data

Field data

Nest surveys of selected islands of the HAI were con-

ducted annually during 2012–2015. The nest surveys were

timed to occur around the time of fledging (summer)

when sea eagles are more tolerant of disturbances near

Figure 1. Locator map of the Houtman Abrolhos Islands, Western Australia.

68 ª 2017 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Semi-Automated Detection of Eagle Nests M. E. Andrew & J. M. Shephard



the nest; however, nests with nestlings were not closely

approached. The location of each observed nest was

recorded with a differential GPS unit (Trimble Pro XRS

or GeoXT, which each achieve submeter accuracy) and,

where practical, photos of the nest (Fig. 2) were taken

from each cardinal direction and from above. The nests

were attributed to species – sea eagle (Fig. 2A and B) or

osprey, Pandion haliaetus (Fig. 2C) – according to nest

characteristics and the presence of feathers, pellets or

nestlings. In total, 43 nests were recorded on nine islands;

Field photo Image segmentation Nest detection results

Nest Image object

10
m

Nest probability

1 0

A

B

C

Figure 2. An illustration of three reference nests as they appear (left) in the field, (center) in the results of the image segmentation and (right) in

the final results of the full nest detection analyses. In the final column, nests not meeting the classification threshold are omitted, and nests above

the threshold are shaded by the continuous Maxent output they received to illustrate their relative degree of membership to the nest class. Nests

illustrated include both (A) tower and (B) seacliff style sea eagle nests, and (C) a large osprey nest. In (B), JMS records characteristics of the main

nest, while a satellite nest is present above and to her right. Field photo credits: (A,B) MEA, (C) D. Alpers. Base image reproduced by permission

of the Western Australian Land Information Authority (Landgate) 2016.
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33 were sea eagle nests, including three satellite nests near

a main nest.

Aerial photography

Very high-resolution (10 cm pixels) true color aerial pho-

tography of the HAI were acquired on 23 April 2012

(northern island group) and 21 June–7 July 2012 (central

and southern island groups), provided as a georeferenced

(RMSE < 5 m) mosaic (www.landgate.wa.gov.au). Speci-

fic acquisition details for each image in the mosaic are

unavailable and notable variation in illumination is evi-

dent, resulting in discrepancies in pixel values and image

quality between images of different islands. There are no

areas of overlap to enable image cross-calibration.

Image analyses

An object-based image analysis (OBIA) was pursued to

detect sea eagle nests. OBIAs group contiguous pixels into

objects, ideally corresponding to discrete entities in the

image data, and apply a classification to the objects. OBIA

is well suited to the VHR image data necessary for wild-

life surveys. OBIA removes the requirement for absolute

brightness differences between nests and background

materials, which is unlikely to be met, instead requiring

that discontinuities be present at nest edges. OBIAs also

greatly expand the number and the type of variables avail-

able to distinguish nests from background materials,

including differences in geometry, texture and relation-

ships with the object’s surroundings (Blaschke 2010). The

full workflow is described below.

Preprocessing

Images of the nine islands containing observed nests were

masked to the land area using a vector dataset of island

boundaries (Department of Fisheries 2013) digitized from

the same aerial photography used in this research.

Because NIR data were not available, a vegetation index

was estimated from the green and red bands: Red-Green

NDVI, RGNDVI = (GREEN–RED)/(GREEN + RED).

Although RGNDVI is less effective than the traditional

NDVI, it provides a reasonable indicator of biophysical

properties of the vegetation (Tucker 1979). Here, we use

it as a general index of greenness, but note that it is fairly

constrained in the HAI where several types of vegetation

are not very green in the visible spectrum.

Images were then spatially filtered to remove extrane-

ous pixel-to-pixel variation. To avoid blurring object

boundaries, a multi-band edge preserving smoothing

algorithm (following Laba et al. 2010) was coded and

applied to the imagery in R (https://cran.r-project.org/).

This approach evaluates the heterogeneity, averaged across

all bands considered, of pixel values within petals sur-

rounding the focal pixel. The average value of the petal

with the least variability is selected as the new value for

the focal pixel. This process was repeated 10 times, to

allow the images to stabilize to final smoothed pixel val-

ues. Two bands were smoothed: the red band, which was

found to have the best contrast of the original true color

bands, and the RGNDVI. All image bands and products

were scaled to range from 0 to 255.

Image segmentation and object features

Image objects were delineated at two hierarchical levels

using eCognition’s multi-resolution segmentation (Benz

et al. 2004). This process iteratively builds objects of con-

tiguous pixels, evaluating whether the addition of each

pixel allows the object to maintain desired homogeneity

and shape criteria, which are set by the user-defined

‘scale’ parameter (Trimble 2012). The scale parameter is

an integrated measure of spectral and shape heterogeneity,

and indirectly controls the size of the identified image

objects. In general, larger scale parameters allow a greater

level of heterogeneity, producing larger objects. Additional

segmentation control parameters that contribute to the

evaluation of the growing object include band weights,

which set the relative importance of each of the provided

image bands to the estimated spectral heterogeneity of the

object; the shape weight, which determines the relative

importance of object shape over spectral heterogeneity;

and the compactness weight, which determines the prefer-

ence for objects with compact versus complex shapes. The

shape and compactness weights range from 0 to 1; higher

values indicate greater importance of shape over spectral

information in delineating the objects, and stronger pref-

erence for compact than complex object shapes, respec-

tively (Trimble 2012).

Six image bands were used in the image segmentation:

the original true color bands, RGNDVI and the smoothed

red and RGNDVI bands. Segmentation was initially per-

formed for a single island containing three nests with dis-

tinctive characteristics. For this image, segmentation

parameters were adjusted iteratively to determine those

most successful at delineating the known nests on this

island. These segmentation parameters were refined

slightly following evaluation on several additional islands.

The final set of segmentation parameters (Table 1) was

then applied to all images. Image objects were divided

into subobjects to characterize their internal heterogene-

ity.

A variety of object features were calculated to charac-

terize the image objects. Because of the inconsistent

radiometry between islands, absolute color information or
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brightness levels of the objects were not used. Instead, we

extracted measures of the geometry, internal texture (cal-

culated from the gray-level co-occurrence matrix, GLCM)

and surrounding neighborhoods of objects (Table 2; and

see Trimble 2012), which are expected to be transportable

between islands, images and nest contexts, and should

support robust, generic nest detection.

Maxent nest detection models, first pass

Nest objects were identified from the object features using

the one-class maximum entropy classification (Maxent;

Elith et al. 2011; Phillips et al. 2006; Phillips and Dud�ık

2008) with the Maxent software (Phillips et al. 2005).

Maxent is a machine learning classification algorithm

widely used in environmental studies and is among the

best available algorithms for modeling species distribu-

tions (Elith et al. 2006). Its application to classification of

remotely sensed data remains rare (Li and Guo 2010; Lin

et al. 2014; Stenzel et al. 2014). However, it is an excellent

choice for nest detection: Maxent makes no distributional

assumptions, can model complex dependencies on the

independent variables, including interactions between

variables, performs well with low sample sizes and

requires only presence data and a set of uncategorized

background observations. Maxent estimates the probabil-

ity distribution function of membership to the nest class

along the supplied object features. From the set of viable

solutions, it chooses the one that makes the fewest

assumptions – that is most similar to the statistical distri-

bution of the background objects (Elith et al. 2011). The

logistic output of Maxent provides a continuous measure

that is proportional to the probability that an object is a

nest (Phillips and Elith 2013).

Several diagnostic outputs provide insights into the

workings of Maxent. These diagnostics are measures of

variable importance and variable response curves, which

respectively highlight which object features make impor-

tant contributions to the ability to discriminate nests and

how nests differ from background objects along these

features. We estimated variable importance as the percent

reduction in model performance when a given variable is

randomly permuted. Univariate response curves were cre-

ated, plotting the logistic output for the observed values

of each variable, without controlling for co-varying vari-

ables.

Models were built from a subset of 31 eagle nests from

eight surveyed islands (data from the ninth island were

used as independent test samples) randomly split into

training (67%) and test (33%) nests, and a random set of

10,000 background objects, and applied to the full set of

image objects. The results were calculated as the average

of 10 replicate runs, each using unique training/test splits

and different random background points. To avoid over-

fitting to the training nests, Maxent models were itera-

tively re-run, removing the least-important object feature

at each step, until all included object features received

importance estimates of >1%.

Identifying dark bare surfaces and final Maxent
models

Preliminary results suggested that it was not possible to

efficiently detect nests without information about object

color. Commission error rates were high, including

objects that were clearly different shades than nests, and

object features that incorporate some brightness informa-

tion (e.g. GLCM mean) had high importance. To accom-

modate the absent image calibration causing inconsistent

brightness values between images of different islands, we

used outputs of an unsupervised pixel-level classification

to provide some information about object color. ISO-

DATA classifications were conducted on the three image

bands and RGNDVI for each island. The desired number

of output classes varied with island size and heterogeneity

(range = [10, 50]). For the largest islands, given comput-

ing limitations, ISODATA classifications were developed

on a random sample of 1% of pixels, which were used to

train a maximum likelihood classifier applying the ISO-

DATA results to the whole island. Classification results

were manually screened to identify the classes capturing

dark bare surfaces, the class comprising sea eagle nests,

and produce a binary, pixel-level ‘dark bare’ layer. This

product was imprecise and also captured much of the

less-than-green vegetation, but contained information that

was independent from the existing object features and

provided helpful contrast between nests and surrounding

objects in visual assessments. ISODATA classifications

were performed in ENVI 5.1 (Harris Geospatial Solutions,

Boulder, CO).

Table 1. eCognition parameters used to segment all images into

objects and subobjects.

Objects Subobjects

Image bands and weights

Red 2 2

Green 1 1

Blue 0 0

RGNDVI 5 5

Red, edge preserving smoothed 1 1

RGNDVI, edge preserving smoothed 1 1

Segmentation parameters

Scale parameter 20 10

Shape (vs. color) weight 0.3 0.2

Compactness weight 0.75 0.5
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Several other researchers have found that coarse pixel-

level classification outputs provide useful inputs to OBIAs

(Yang et al. 2014; Lasaponara et al. 2016), however, they

included the classification results among the layers used

to derive the segmentation. In contrast, we retained the

image objects produced as described in the section ‘Image

segmentation and object features,’ but estimated new

object features using the dark bare layer: the fraction of

an object in the dark bare class, and characteristics of the

object’s neighborhood in this layer (Table 2).

A final set of replicate Maxent runs was performed

including the new dark bare measures. We also refined

the training data used: (1) Background objects were con-

strained to the set of objects receiving Maxent predictions

within the range of values assigned to true nests in the

first pass models. (2) Only a set of 23 ‘high quality’ nests

were used. The eight nests excluded from these models

were heavily weathered discarded nests, unrepresentative

nests (e.g. the single nest in a mangrove) or poorly seg-

mented into objects.

Table 2. Object features evaluated for their ability to discriminate between sea eagle nests and background image objects.

Object features Description

Object color

Dark bare fraction Proportion of the pixels in an object assigned to the ‘dark bare’ class by a preliminary unsupervised classification

Object geometry

Area Number of pixels in an object

Length An estimate of the length (long-axis) of an object, in pixels

Width An estimate of the width (short-axis) of an object, in pixels

Asymmetry An estimate of the shape complexity of the object, calculated from the variability of X and Y coordinates of pixels

within the object

Compactness An estimate of the shape complexity of the object, calculated as the ratio between the object’s area and the area

of a maximally compact object of the same dimensions

Elliptic fit An estimate of the shape complexity of the object, calculated as the degree of fit between an object and a

smooth ellipse of similar dimensions

Roundness An estimate of the shape complexity of the object, calculated from the difference in size of ellipses that (1)

completely enclose the object and (2) are completely enclosed by the object

Shape index An estimate of the shape complexity of the object, calculated as the ratio between the object’s perimeter and the

perimeter of a maximally compact object of the same area

Object texture – pixel level

Contrast, GLCM Degree of contrast in brightness between neighbor pixels within an object; calculated in all directions for red band

and RGNDVI

Entropy, GLCM Evenness of cell values in the gray-level co-occurrence matrix; calculated in all directions for red band and RGNDVI

Mean, GLCM Average pixel value, weighted by co-occurrence with other pixel values in the object; calculated in all directions

for red band and RGNDVI

Correlation, GLCM Spatial autocorrelation of pixel values within the object; calculated in all directions for red band and RGNDVI

Skewness Describes the shape of the statistical distribution of pixel values within the object

Object texture – subobject level

Number of subobjects The number of subobjects contained within the object

Subobject variability Standard deviation of pixel values within subobject, averaged across all subobjects in the object; calculated for red

band and RGNDVI

Subobject area Average area of subobjects in the object

Subobject area

variability

Standard deviation of areas of the subobjects within the object

Subobject shape Asymmetry of subobjects, averaged across all subobjects in the object

Subobject shape

variability

Standard deviation of asymmetries of the subobjects within the object

Object neighborhood

Mean difference

to neighbors

An estimate of the contrast between the object and its neighborhood, measured as the difference between the

object’s average pixel value and the average pixel value of the neighboring objects; calculated for red band,

RGNDVI and the dark bare fraction

Standard deviation

to neighbors

An estimate of the immediate neighborhood of an object, measured as the variability of pixel values in the

bounding box surrounding an object; calculated for red band, RGNDVI and the dark bare class

Number of neighbors The number of objects adjoining the object’s border

Pixel-level texture metrics were calculated from the gray-level co-occurrence matrix (GLCM) following Haralick et al. (1973).
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A difficulty with one-class classifiers such as Maxent is

the selection of a threshold value to transform the contin-

uous output to a binary classification result (Mack et al.

2014). In order to be conservative and avoid missing

many nests, we set the threshold at the output value cor-

responding to an omission rate on the training nests of

10%, averaged across the 10 replicate runs.

Validation

Classification performance was evaluated using the area

under the receiver operating characteristic (ROC) curve

(AUC), estimated on the 33% of hold-out nests for each

replicate Maxent run. AUC values >0.5 indicate classifier

performance better than random; AUC > 0.7 indicates a

useful model. In addition, detection rates are reported for

both the set of 23 high-quality sea eagle nests and the

remaining 20 nests not used in the final Maxent models.

The detection rate of high quality nests is likely an opti-

mistic estimate since each nest was used to train, on aver-

age, two-thirds of the replicate runs. However, detection

of the 20 independent nests is probably a conservative

estimate. Although two of these nests are sea eagle nests

from the independent test island, the remainder are

osprey nests (often distinctly taller than sea eagle nests;

Fig. 2C), or sea eagle nests deemed to be unrepresentative

and excluded from the final Maxent models (as described

above).

Results

The image segmentation produced over 2 million objects

across the nine islands and was generally successful at

delineating known nests (Fig. 2, central column). How-

ever, it was difficult to determine a set of generic segmen-

tation parameters optimized for all images and nests. A

few nests were subdivided into several objects (e.g.

Fig. 2C) and/or included surrounding areas within the

main nest object, although this did not necessarily pre-

clude the Maxent classifiers from identifying these nests.

Although the first pass of Maxent models were insuffi-

cient, they successfully excluded ~83% of all image objects

that were extremely unlikely to be nests, achieving

AUC = 0.94 on the hold-out set of test nests, averaging

across the 10 replicates. Thirteen object features were

retained following stepwise removal of unimportant vari-

ables (Table 3). The most important object features for

distinguishing nests, in this pass, characterized object rela-

tionships with its neighborhood and texture, although size

– both area and the linear dimensions of length and

width – also made contributions (Table 3). Nests tended

to occur in pixel neighborhoods with modest, but not

zero, variability in greenness, and were less green than

neighboring objects (Fig. 3). In addition, nests had med-

ium to dark brightness values in the red band, when

weighted by the co-occurrence of values between adjacent

pixels (GLCM mean), extremely low internal pixel-to-

pixel contrast in the red band and had similar shades in

the red band to neighboring objects (Fig. 3). The likeli-

hood of being a nest peaked for objects that had an area

of ~500 pixels (5 m2), and that were roughly 20 pixels

(2 m) across (Fig. 3).

The dark bare classification results substantially

improved the nest detection models, reducing the set of

possible nests to 1.9% of all image objects when using the

average 10% training omission threshold. AUC values for

the final Maxent models were slightly lower than in the

first pass (AUC = 0.87), likely because only the set of

‘tough cases’ were used as background objects for training

Table 3. Importance of object features at distinguishing between sea

eagle nests and background objects in both the first pass and final

Maxent models.

Object features First pass Maxent Final Maxent

Object color

Dark bare fraction — 18.20

Object geometry

Area 10.87 7.10

Length 6.24 2.00

Width 4.98 5.11

Compactness — 1.89

Roundness 3.12 —

Object texture – pixel level

Contrast, GLCM; red band 11.60 3.74

Contrast, GLCM; RGNDVI 2.29 —

Entropy, GLCM; RGNDVI 1.58 —

Mean, GLCM; red band 13.56 —

Mean, GLCM; RGNDVI — 3.19

Correlation, GLCM, red band — 1.29

Skewness, green band 2.15 —

Skewness, blue band — 1.62

Object texture – subobject level

Subobject area variability — 1.04

Object neighborhood

Mean diff to neighbors, red band 6.99 —

Mean diff to neighbors, RGNDVI 16.80 —

Mean diff to neighbors,

dark bare fraction

— 21.19

Standard deviation to neighbors,

red band

3.61 —

Standard deviation to neighbors,

RGNDVI

16.17 25.06

Standard deviation to neighbors,

dark bare fraction

— 6.74

Number of neighbors — 1.80

Variable importance was estimated by permutation. Values shown are

the average across 10 replicate runs for both Maxent models. Values

in bold indicate variables with above-average importance.
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and evaluation. The detection rate of the averaged final

Maxent predictions on the ‘high quality’ nests was 91%

(21 of 23 nests). The model was also reasonably successful

at identifying independent, poor quality nests, with a

detection rate of 75%: nine out of 20 nests were success-

fully detected; another six, three of them large, ram-

shackle osprey nests, were missed but adjacent objects of

nest debris were successfully classified as nests.

There were 14 object features in the final Maxent mod-

els (Table 3). Interestingly, the most important feature

was the variability of greenness in the object neighbor-

hood, which was the second most important feature in

the first pass Maxent models (Table 3). Other object fea-

tures with high importance in the final Maxent models

were those derived from the dark bare classification

results (Table 3). The likelihood of being a nest increased
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Figure 3. Univariate response curves from the first pass Maxent classification, illustrating the relationships between evaluated object features and

predicted probability of nest membership. Graphs plot the mean � standard deviation (shading) of 10 replicate Maxent runs for all variables

retained in the models. Object features are ordered by decreasing variable importance.
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as the fraction of dark bare pixels within an object

increased; nests also had a higher fraction of dark bare

pixels than their neighbors, and tended to occur in neigh-

borhoods with moderate pixel-level variability in the dark

bare layer (Fig. 4). In addition, several variables that fea-

tured prominently in the first pass models maintained

their importance and exhibited similar response curves

(Table 3; Fig. 4).

The nest detection results are mapped out in Figure 2

(right column) for a diverse selection of nests, including

both tower (Fig. 2A) and seacliff (Fig. 2B) style sea eagle

nests of varying size and shape, and a large osprey nest

(Fig. 2C). In addition, the segmentation and classification

results in Figure 2B and C give an indication of what

some of the false positive cases surrounding the known

nests are like.
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Figure 4. Univariate response curves from the final Maxent classification. Graphs plot the mean � standard deviation (shading) of 10 replicate

Maxent runs for all variables retained in the models. Object features are ordered by decreasing variable importance.
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Discussion

Despite the considerable challenges of detecting rare, subtle

objects against a heterogeneous background, we demon-

strate that it is possible to identify sea eagle nests from very

high-resolution aerial photography using advanced image

analyses. The semi-automated nest detection analyses pre-

sented here correctly detected over three-quarters of all

nests and labeled <2% of the features occurring on the

islands as candidate nests. Of the sample of reference nests,

91% of high quality nests were identified, and the majority

of an independent set of weathered, unusual or poorly seg-

mented nests were also detected. While nests certainly do

not make up 2% of the island area, a high over-prediction

rate is likely unavoidable given the lack of strong discrimi-

nating features between nests and many of the other natural

occurring objects on the islands and wide variation in nest

characteristics in the image data, both due to physical dif-

ferences between the nests and differences in image acquisi-

tion. Thus, the performance of the automated nest

detection analyses is extremely positive. Our results are

comparable to Mejias et al. (2013), who also report high

false positive rates for their automated detections of

dugongs from UAV-based photography.

Although the results over-predict the occurrence of

nests, they are suitable to guide nest inventories, monitor-

ing and management of this species. The mapped results

can be visually screened by a natural resource manager to

rule out all but the most likely nests. This process is

much simpler and more efficient than manually photoint-

erpreting nests from the full image. Many of the nests are

ambiguous in aerial imagery and easy to overlook (see,

e.g. the sample of nests illustrated in Fig. 2). Manual

search of the full images for nests is an uncertain, drain-

ing process that would probably not achieve the high

detection rates (75–91%) of the semi-automated analyses.

In contrast, it is much simpler to screen the candidate

nest objects identified by the semi-automated analyses to

determine whether or not they are likely to be true nests.

This is for several reasons; (1) it is a much more bounded

task: as humans, it is easier to decide whether or not a

specific image object, from those selected by the Maxent

models, is likely to be an actual nest, than to perform an

open-ended search of the entire images to discern the

subtle features related to nests; (2) although OBIA are

often framed as being more similar to the human process

of photointerpretation than are pixel-level analyses, the

Maxent models here are obviously using additional and

complementary information to the cues we use in visual

interpretation. As a result, many of the objects identified

as candidate nests by the models are quite distinct from

true nests to the analyst, and can be discarded from the

candidate set very quickly.

The successful detection of sea eagle nests was enabled

by the creative integration of object-based image analyses

and a powerful machine learning classifier. The advan-

tages of OBIA are clear: the spatial characteristics of

image objects add a wealth of independent information

that improve the detectability of items of interest. OBIA

have been successfully applied to a range of objectives,

including the detection of subtle features such as isolated

tree mortality within forests (Guo et al. 2007), seismic

lines (He et al. 2011) and archeological remains (Luo

et al. 2014; Lasaponara et al. 2016), and are beginning to

be evaluated for wildlife surveys (Groom et al. 2011,

2013; Yang et al. 2014). However, many OBIA examples

to date use rule-based expert system classifiers, in part

because they are easily implemented in the popular eCog-

nition software. While a priori decision rules work well in

many contexts, they may limit the capabilities of OBIA

when the target differs subtly from background objects; is

distinguishable along features that are not readily intu-

itive, such as the gray-level co-occurrence matrix (GLCM)

texture metrics; or is separable due to complex multivari-

ate interactions between object features, but not in

straightforward univariate comparisons.

Although we are pleased with the performance of the

semi-automated nest detection and believe that the results

are suitable to guide management, there is likely room for

improvement within the developed workflow. First, the

requirement for a single set of segmentation parameters

limited the ability to successfully delineate all nests into

image objects. It is not possible to give absolute recom-

mendations about the segmentation parameters most

appropriate for a given goal. The parameters in eCogni-

tion are indirectly related to the size and characteristics of

ensuing objects, and optimal settings vary depending on

the characteristics of the image data and the environment

being imaged (Moffett and Gorelick 2013). If a sample of

known reference nests exists in all images to be analyzed,

it may be possible to optimize the segmentation individu-

ally for each island, but this reduces the ease of transfer-

ring this method between islands with somewhat

comparable image data.

Other gains may be achieved by increasing the amount

of information gleaned from both classifications that were

performed. The intermediary ISODATA classification

results contributed crucial advances to our ability to dis-

criminate sea eagle nests by allowing the final Maxent

classification to make some use of the color of the

objects, which was otherwise unreliable due to the lack of

calibration between images. Waser et al. (2011) also

found that color information improved individual tree

species classifications over those developed using object

geometry alone. However, we took relatively little advan-

tage of the ISODATA results, deriving a single broad class
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expected to be directly related to the nests: pixels similar

in color to dark bare ground. Yet, a number of other

clusters related to other surface features were produced,

which may contain additional useful information for

characterizing nests and the relationships between nests

and their neighborhoods.

Finally, it may be possible to reduce commission error

rates with a full classification, rather than a one-class clas-

sifier. One-class classifiers are attractive because they

remove the need to have adequate training data for

classes that are not of interest (Lin et al. 2014; Stenzel

et al. 2014). However, without reference data for other

classes, appropriate thresholds to create a final binary

output cannot be objectively determined, especially when

there is considerable similarity between the target and

other classes (Mack et al. 2014). With a one-class classi-

fier, all that is known is that a given object may have high

similarity to the target, whereas a full classifier may reveal

that, nevertheless, the object is more similar to another

class, reducing the area assigned to the target class. An

effective compromise may be the approach of Stenzel

et al. (2014), who mapped four classes simultaneously

with Maxent, allowing the identification of pixels with

ambiguous estimates of class membership.

It may seem that a poor choice of image data created

many unnecessary difficulties for our study. Nest detection

may be improved by the availability of NIR data, facilitat-

ing discrimination of nests from drab vegetation, and

would be simplified by the use of calibrated image data,

enabling direct use of color information. However, we con-

sider these disadvantages of our data and the solutions we

devised to overcome them to be a strength of this study.

Wildlife managers and environmental practitioners often

have little control over the spatial data available to them

and must make the most of imperfect data. The limitations

of our aerial photography – no calibration and true color

bands only – are common and likely to become more so

given the emergence of non-traditional data sources such

as some UAV-based imagery and the VHR image mosaics

in Google Earth and other virtual globes. Virtual globes are

an immense resource, as the high-resolution imagery they

contain would not otherwise be freely available. However,

due to their scant metadata and uncertain radiometry, stan-

dard pixel-level analyses of such data are inappropriate (Yu

and Gong 2012). Consequently, Google Earth imagery is

most often interpreted manually (e.g. Begall et al. 2008;

Dorais and Cardille 2011; Hughes et al. 2011; Visser et al.

2014; Westcott and Andrew 2015). However, while absolute

pixel values may not be reliable, the relationships between

neighboring pixels are, and image texture and object-based

analyses, such as those described here, of the imagery

within virtual globes can support rigorous research and

diverse applications (Barbier et al. 2010; Mering et al.

2010; Ploton et al. 2012; Luo et al. 2014). Olea and Mateo-

Tom�as (2016) complain that virtual globes are currently

underused by ecologists. The insights of our nest detection

analyses and our workflow are broadly applicable, and we

hope they will stimulate researchers and practitioners to get

more out of non-traditional image data, for wildlife surveys

and beyond.
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