139 research outputs found

    Charged Black Hole in a Canonical Ensemble

    Get PDF
    We consider the thermodynamics of a charged black hole enclosed in a cavity. The charge in the cavity and the temperature at the walls are fixed so that we have a canonical ensemble. We derive the phase structure and stability of black hole equilibrium states. We compare our results to that of other work which uses asymptotically anti-de Sitter boundary conditions to define the thermodynamics. The thermodynamic properties have extensive similarities which suggest that the idea of AdS holography is more dependent on the existence of the boundary than on the exact details of asymptotically AdS metrics.Comment: 9 pages; 4 multipart figure

    Selective Protein Labelling to Visualize Cellular Differentiation

    Get PDF
    Protein post-translational modifications serve to give proteins new cellular function, spatial localization, or enzymatic activity. Myristoylation is a common post-translational modification where the enzyme N-myristoyltransferase adds myristic acid onto the N-terminus of a variety of proteins. In this work we use a myristic acid analog, 12-azidododecanoic acid (12ADA) to facilitate the implementation of azide-alkyne cycloaddition reactions on myristoylated proteins. Selective protein labeling methods such as these are useful in research because they can be used to help determine the biological function of this protein lipid modification and can be extended to study disregulated protein myristoylation in disease states. To validate 12ADA incorporation onto proteins, C2C12 myoblast cell lysates were reacted with an alkyne functionalized fluorophore and analyzed via SDS-PAGE. In order to visualize 12ADA tagged proteins in vivo, fixed C2C12 cells were reacted with an alkyne functionalized fluorophore and were imaged with a fluorescent microscope. The results clearly indicate selective protein tagging in in vitro lysates and in vivo. There is a distinct difference in the patterning of 12ADA protein tagging between differentiated and non-differentiated cells. The purpose of this research is to develop a selective protein labeling method. In our research, this selective protein labeling method is used to studying cellular differentiation in the context of developmental biology. Currently, there is not a clear understanding of the proteins associated with cellular differentiation related to development. Understanding this can allow scientists to track development progress and understand unique proteins associated with differentiating cells

    Stringy Effects During Inflation and Reheating

    Get PDF
    We consider inflationary cosmology in the context of string compactifications with multiple throats. In scenarios where the warping differs significantly between throats, string and Kaluza-Klein physics can generate potentially observable corrections to the cosmology of inflation and reheating. First we demonstrate that a very low string scale in the ground state compactification is incompatible with a high Hubble scale during inflation, and we propose that the compactification geometry is altered during inflation. In this configuration, the lowest scale is just above the Hubble scale, which is compatible with effective field theory but still leads to potentially observable CMB corrections. Also in the appropriate region of parameter space, we find that reheating leads to a phase of long open strings in the Standard Model sector (before the usual radiation-dominated phase). We sketch the cosmology of the long string phase and we discuss possible observational consequences.Comment: 33pp, RevTeX4, v2. minor changes, added ref

    Statistical Hair on Black Holes

    Get PDF
    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory.Comment: 11 pages, harvmac, minor addition

    Topology, Quantum Gravity and Particle Physics

    Get PDF
    It is argued that quantum gravity has an interpretation as a topological field theory provided a certain constraint from the path intergral measure is respected. The constraint forces us to couple gauge and matter fields to gravity for space - time dimensions different from 3. We then discuss possible models which may be relevant to our universe.Comment: 18 pages, LaTeX. Replaced version corrects typos and has additional reference

    Supersymmetry and Positive Energy in Classical and Quantum Two-Dimensional Dilaton Gravity

    Get PDF
    An N=1N = 1 supersymmetric version of two dimensional dilaton gravity coupled to matter is considered. It is shown that the linear dilaton vacuum spontaneously breaks half the supersymmetries, leaving broken a linear combination of left and right supersymmetries which squares to time translations. Supersymmetry suggests a spinorial expression for the ADM energy MM, as found by Witten in four-dimensional general relativity. Using this expression it is proven that M{M} is non-negative for smooth initial data asymptotic (in both directions) to the linear dilaton vacuum, provided that the (not necessarily supersymmetric) matter stress tensor obeys the dominant energy condition. A {\it quantum} positive energy theorem is also proven for the semiclassical large-NN equations, despite the indefiniteness of the quantum stress tensor. For black hole spacetimes, it is shown that MM is bounded from below by e2ϕHe^{- 2 \phi_H}, where ϕH\phi_H is the value of the dilaton at the apparent horizon, provided only that the stress tensor is positive outside the apparent horizon. This is the two-dimensional analogue of an unproven conjecture due to Penrose. Finally, supersymmetry is used to prove positive energy theorems for a large class of generalizations of dilaton gravity which arise in consideration of the quantum theory.Comment: 21 page

    The Matrix Theory S-Matrix

    Get PDF
    The technology required for eikonal scattering amplitude calculations in Matrix theory is developed. Using the entire supersymmetric completion of the v^4/r^7 Matrix theory potential we compute the graviton-graviton scattering amplitude and find agreement with eleven dimensional supergravity at tree level.Comment: 10 pages, RevTeX, no figure

    Reducing SS- duality to TT- duality

    Get PDF
    The infrared limit of D=4,  N=4D=4,~~N=4 Yang-Mills theory with compact gauge group GG compactified on a two-torus is governed by an effective superconformal field theory. We conjecture that this is a certain orbifold involving the maximal torus of GG. Yang-Mills SS-duality makes predictions for all correlators of this effective conformal field theory. These predictions are shown to be implied by the standard TT-duality of the conformal field theory. Consequently, Montonen-Olive duality between electric and magnetic states reduces to the standard two-dimensional duality between momentum and winding states.Comment: 13 pages, harvmac, no figures. (Some Comments added. Some references added.

    Four Dimensional Black Holes in String Theory

    Full text link
    Exact solutions of heterotic string theory corresponding to four-dimensional charge Q magnetic black holes are constructed as tensor products of an SU(2)/Z(2Q+2) WZW orbifold with a (0,1) supersymmetric SU(1,1)/U(1) WZW coset model. The spectrum is analyzed in some detail. ``Bad'' marginal operators are found which are argued to deform these theories to asymptotically flat black holes. Surprising behaviour is found for small values of Q, where low-energy field theory is inapplicable. At the minimal value Q=1, the theory degenerates. Renormalization group arguments are given that suggest the potential gravitational singularity of the low-energy field theory is resolved by a massive two-dimensional field theory. At Q=0, a stable, neutral ``remnant,'' of potential relevance to the black hole information paradox, is found.Comment: 37 pages + 1 figure (tar compressed and uuencoded

    N=3 Warped Compactifications

    Get PDF
    Orientifolds with three-form flux provide some of the simplest string examples of warped compactification. In this paper we show that some models of this type have the unusual feature of D=4, N=3 spacetime supersymmetry. We discuss their construction and low energy physics. Although the local form of the moduli space is fully determined by supersymmetry, to find its global form requires a careful study of the BPS spectrum.Comment: 27 pages, v2: 32pp., RevTeX4, fixed factors, slightly improved sections 3D and 4B, v3: added referenc
    corecore