2,070 research outputs found

    Design of crystal-like aperiodic solids with selective disorder--phonon coupling

    Get PDF
    Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic "procrystalline" solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood "waterfall" effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.Comment: 4 figure

    Detecting Tree Mortality with Landsat-Derived Spectral Indices: Improving Ecological Accuracy by Examining Uncertainty

    Get PDF
    Satellite-derived fire severity metrics are a foundational tool used to estimate fire effects at the landscape scale. Changes in surface characteristics permit reasonably accurate delineation between burned and unburned areas, but variability in severity within burned areas is much more challenging to detect. Previous studies have relied primarily on categorical data to calibrate severity indices in terms of classification accuracy, but this approach does not readily translate into an expected amount of error in terms of actual tree mortality. We addressed this issue by examining a dataset of 40,370 geolocated trees that burned in the 2013 California Rim Fire using 36 Landsat-derived burn severity indices. The differenced Normalized Burn Ratio (dNBR) performed reliably well, but the differenced SWIR:NIR ratio most accurately predicted percent basal area mortality and the differenced normalized vegetation index (dNDVI) most accurately predicted percent mortality of stems ≥10 cm diameter at breast height. Relativized versions of dNBR did not consistently improve accuracy; the relativized burn ratio (RBR) was generally equivalent to dNBR while RdNBR had consistently lower accuracy. There was a high degree of variability in observed tree mortality, especially at intermediate spectral index values. This translated into a considerable amount of uncertainty at the landscape scale, with an expected range in estimated percent basal area mortality greater than 37% for half of the area burned (\u3e50,000 ha). In other words, a 37% range in predicted mortality rate was insufficient to capture the observed mortality rate for half of the area burned. Uncertainty was even greater for percent stem mortality, with half of the area burned exceeding a 46% range in predicted mortality rate. The high degree of uncertainty in tree mortality that we observed challenges the confidence with which Landsat-derived spectral indices have been used to measure fire effects, and this has broad implications for research and management related to post-fire landscape complexity, distribution of seed sources, or persistence of fire refugia. We suggest ways to account for uncertainty that will facilitate a more nuanced and ecologically-accurate interpretation of fire effects. This study makes three key contributions to the field of remote sensing of fire effects: 1) we conducted the most comprehensive comparison to date of all previously published severity indices using the largest contiguous set of georeferenced tree mortality field data and revealed that the accuracy of both absolute and relative spectral indices depends on the tree mortality metric of interest; 2) we conducted this study in a single, large fire that enabled us to isolate variability due to intrinsic, within-landscape factors without the additional variance due to extrinsic factors associated with different biogeographies or climatic conditions; and 3) we identified the range in tree mortality that may be indistinguishable based on spectral indices derived from Landsat satellites, and we demonstrated how this variability translates into a considerable amount of uncertainty in fire effects at the landscape scale

    Genomic plasticity of pathogenic Escherichia coli mediates D-serine tolerance via multiple adaptive mechanisms

    Get PDF
    Significance Pathogens ensure infection of favored sites in the body by responding to chemical signals. One chemical abundant in urine, the amino acid d -Ser, is toxic to EHEC and reduces expression of the machinery used for host cell attachment, making the bladder an unfavorable environment. We observed that under d -Ser stress, EHEC acquires genetic changes that lead to blocking d -Ser uptake into the cell or activating a silent enzyme for degrading d -Ser. This prevents growth inhibition and, critically, inhibits the repression of attachment machinery normally caused by d -Ser. These findings highlight the importance of pathogen evolution in determining how host molecules regulate colonization. These interactions underpin a process known as niche restriction that is important for pathogen success within the host

    Cost-effectiveness of irbesartan in diabetic nephropathy: a systematic review of published studies

    Get PDF
    Background. To review published studies on the cost-effectiveness of the use of irbesartan for treatment of advance overt nephropathy in patients with type 2 diabetes and hypertension. Methods. Articles were identified based on a search of the PubMed databases using the keywords ‘irbesartan', ‘ESRD', ‘cost-effectiveness', ‘nephropathy' and ‘costs', and by personal communication with the authors. Only studies published in the last 10 years were included. All costs data from the cost-effectiveness studies were inflated to 2003 Euros using published governmental conversion tables. Results. Seven published studies were identified, spanning the following country settings: the US, Belgium and France, Germany, Hungary, Italy, Spain, and the UK. In each, the same pharmacoeconomic model was adapted using country-specific data to project and evaluate the clinical and cost outcomes of the treatment arms of the Irbesartan in Diabetic Nephropathy Trial (IDNT) (irbesartan, amlodipine or standard blood pressure control). Mean time to onset of ESRD was 8.23 years for irbesartan, 6.82 years for amlodipine and 6.88 years for the control (values were the same for Belgium, France, Germany, Hungary, Italy and Spain as transition probabilities for progression to ESRD were all derived from the IDNT). Mean cumulative incidence of ESRD was 36% with irbesartan, 49% with amlodipine and 45% with control treatment. Treatment with irbesartan was projected to improve life expectancy compared to both amlodipine and control in all seven published studies. Analysis of total lifetime costs showed that irbesartan treatment was cost saving compared to the other two treatment regimens, due to the associated reduction in ESRD cases. Cost savings with irbesartan became evident very early; after 2-3 years of treatment in most settings. Conclusions. Modelling studies based on the IDNT published to date suggest that irbesartan treatment in patients with type 2 diabetes, hypertension and advanced nephropathy is both life- and cost-saving compared to amlodipine or contro

    Fuel Dynamics After Reintroduced Fire in an Old-Growth Sierra Nevada Mixed-Conifer Forest

    Get PDF
    Background: Surface fuel loadings are some of the most important factors contributing to fire intensity and fire spread. In old-growth forests where fire has been long excluded, surface fuel loadings can be high and can include woody debris ≥100 cm in diameter. We assessed surface fuel loadings in a long-unburned old-growth mixed-conifer forest in Yosemite National Park, California, USA, and assessed fuel consumption from a management-ignited fire set to control the progression of the 2013 Rim Fire. Specifically, we characterized the distribution and heterogeneity of pre-fire fuel loadings, both along transects and contained in duff mounds around large trees. We compared surface fuel consumption to that predicted by the standard First Order Fire Effects Model (FOFEM) based on pre-fire fuel loadings and fuel moistures. We also assessed the relationship between tree basal area—calculated for two different spatial neighborhood scales—and pre-fire fuel loadings. Results: Pre-fire total surface fuel loading averaged 192 Mg ha−1 and was reduced by 79% by the fire to 41 Mg ha−1 immediately after fire. Most fuel components were reduced by 87% to 90% by the fire, with the exception of coarse woody debris (CWD), which was reduced by 60%. Litter depth in duff mounds were within 1 SD of plot means, but duff biomass for the largest trees (\u3e150 cm diameter at breast height [DBH]) exceeded plot background levels. Overstory basal area generally had significant positive relationships with pre-fire fuel loadings of litter, duff, 1-hour, and 10-hour fuels, but the strength of the relationships differed between overstory components (live, dead, all [live and dead], species), and negative relationships were observed between live Pinus lambertiana Douglas basal area and CWD. FOFEM over-predicted rotten CWD consumption and under-predicted duff consumption. Conclusions: Surface fuel loadings were characterized by heterogeneity and the presence of large pieces. This heterogeneity likely contributed to differential fire behavior at small scales and heterogeneity in the post-fire environment. The reductions in fuel loadings at our research site were in line with ecological restoration objectives; thus, ecologically restorative burning during fire suppression is possible
    • …
    corecore