765 research outputs found

    Velocity map imaging of the dynamics of the CH3 + HCl -> CH4 + Cl reaction using a dual molecular beam method

    Get PDF
    International audienceThe reactions CH3 + HCl → CH4 + Cl(<sup>2</sup>P<sub>3/2</sub>) and CD<sub>3</sub> + HCl → CD<sub>3</sub>H + Cl(<sup>2</sup>P<sub>3/2</sub>) have been studied by photo-initiation (by CH<sub>3</sub>I or CD<sub>3</sub>I photolysis at 266 nm) in a dual molecular beam apparatus. Product Cl(<sup>2</sup>P</sub>3/2</sub>) atoms were detected using resonance enhanced multi-photon ionisation and velocity map imaging, revealing product translational energy and angular scattering distributions in the centre-of-mass frame. Image analysis is complicated by the bimodal speed distribution of CH<sub>3</sub> (and CD<sub>3</sub>) radicals formed in coincidence with I(<sup>2</sup>P<sub>3/2</sub>) and I(<sup>2</sup>P<sub>1/2</sub>) atoms from CH<sub>3</sub>I (CD<sub>3</sub>I) photodissociation, giving overlapping Newton diagrams with displaced centre of mass velocities. The relative reactivities to form Cl atoms are greater for the slower CH<sub>3</sub> speed group than the faster group by factors of ~1.5 for the reaction of CH<sub>3</sub> and ~2.5 for the reaction of CD<sub>3</sub>, consistent with the greater propensity of the faster methyl radicals to undergo electronically adiabatic reactions to form Cl(<sup>2</sup>P<sub>1/2</sub>). The average fraction of the available energy becoming product translational energy is = 0.48 ± 0.05 and 0.50 ± 0.03 for reaction of the faster and slower sets of CH<sub>3</sub> radicals, respectively. The Cl atoms are deduced to be preferentially forward scattered with respect to the HCl reagents, but the angular distributions from the dual beam imaging experiments require correction for under-detection of forward scattered Cl products

    A parallel multistate framework for atomistic non-equilibrium reaction dynamics of solutes in strongly interacting organic solvents

    Get PDF
    We describe a parallel linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM. Forces are obtained using the Hellman-Feynmann relationship, giving continuous gradients, and excellent energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to CCSD(T)-F12 electronic structure theory, we built a 64-state MS-EVB model designed to study the F + CD3CN -> DF + CD2CN reaction in CD3CN solvent. This approach allows us to build a reactive potential energy surface (PES) whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We use our PES to run MD simulations, and examine a range of transient observables which follow in the wake of reaction, including transient spectra of the DF vibrational band, time dependent profiles of vibrationally excited DF in CD3CN solvent, and relaxation rates for energy flow from DF into the solvent, all of which agree well with experimental observations. Immediately following deuterium abstraction, the nascent DF is in a non-equilibrium regime in two different respects: (1) it is highly excited, with ~23 kcal mol-1 localized in the stretch; and (2) not yet Hydrogen bonded to the CD3CN solvent, its microsolvation environment is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral blue shift, while relaxation of its microsolvation environment results in a red shift. These two competing effects result in a post-reaction relaxation profile distinct from that observed when DF vibration excitation occurs within an equilibrium microsolvation environment. The parallel software framework presented in this paper should be more broadly applicable to a range of complex reactive systems.Comment: 58 pages and 29 Figure
    • …
    corecore